Optical Modes in Elliptical Microcavities for Single-Photon Sources

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A theory of optical modes in an elliptical microcavity has been developed using Mathieu functions in elliptical coordinates. A key difference from the circular case is the splitting of doubly degenerate modes. Split optical modes have been numerically calculated and their symmetry has been determined. A method has been proposed to choose the parameters of a cavity for a certain wavelength. The difference between the energies of optical modes in the cavity with metallic walls and in the dielectric cavity is no more than ~20%. The dispersion relations of optical modes show the possibility of degeneracy of modes with different symmetries, which allows the spectral and polarization filtering of radiation of single-photon sources and the fabrication of sources of multiply entangled states.

Sobre autores

D. Kazanov

Ioffe Institute

Email: kazanovdr@gmail.com
194021, St. Petersburg, Russia

A. Monakhov

Ioffe Institute

Autor responsável pela correspondência
Email: kazanovdr@gmail.com
194021, St. Petersburg, Russia

Bibliografia

  1. M. Arcari, I. S'ollner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, Phys. Rev. Lett. 113, 093603 (2014).
  2. R. Uppu, F. T. Pedersen, Y. Wang, C. T. Olesen, C. Papon, X. Zhou, L. Midolo, S. Scholz, A. D. Wieck, A. Ludwig, and P. Lodahl, Sci. Adv. 6, 50 (2020).
  3. I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Ger'ard, Opt. Express 17, 2095 (2009).
  4. М. А. Бобров, С. А. Блохин, Н. А. Малеев, А. Г. Кузьменков, А. А. Блохин, А. П. Васильев, Ю. А. Гусева, М. В. Рахлин, А. И. Галимов, Ю. М. Серов, С. И. Трошков, В. М. Устинов, А. А. Торопов, Письма в ЖЭТФ 116(9), 592 (2022).
  5. P. Senellart, G. Solomon, and A. White, Nat. Nanotechnol. 12, 1026 (2017).
  6. Y.-J. Wei, Y.-M. He, M.-C. Chen, Y.-N. Hu, Y. He, D. Wu, C. Schneider, M. Kamp, S. H¨o ing, C.-Y. Lu, and J.-W. Pan, Nano Lett. 14(11), 6515 (2014).
  7. H. Wang, Y.-M. He, T.-H. Chung et al. (Collaboration), Nat. Photon. 13, 770 (2019).
  8. U. M. Gu¨r, M. Mattes, S. Arslanagi'c, and N. Gregersen, Appl. Phys. Lett. 118, 061101 (2021).
  9. X. Chen, R. Su, J. Liu, J. Li, and X.-H. Wang, Photonics Research 10, 2066 (2022).
  10. B. Gayral, J. M. G'erard, B. Legrand, E. Costard, and V. Thierry-Mieg, Appl. Phys. Lett. 72, 1421 (1998).
  11. N. McLachlan, Theory and Application of Mathieu Functions, Oxford University Press, Oxford (1947).
  12. М. Абрамовиц, И. Стиган, Справочник по специальным функциям, Наука, М. (1979).
  13. Л. А. Вайнштейн, Электромагнитные волны, АСТ, М. (1988), 440 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Российская академия наук, 2023