Radiation Formation of Interlayer Bridges in Bilayer Graphene

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The radiation formation of interlayer bridges in bilayer graphene has been studied with the nonorthogonal tight binding model. It has been shown that most (~85%) of the formed bridges have a low thermal stability excluding their application in elements of graphene electronics working at room temperature. Three types of stable bridges with the annealing activation energies of 1.50, 1.52, and 2.44 eV have been revealed. Estimates by the Arrhenius formula have shown that these bridge types have macroscopic lifetime at room temperature. It has been found that the radiation formation of bridges in bilayer graphene significantly differs from a similar process in graphite.

Sobre autores

A. Podlivaev

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Autor responsável pela correspondência
Email: aipodlivayev@mephi.ru
115409, Moscow, Russia

Bibliografia

  1. K. S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).
  2. А.Е. Галашев, О.Р. Рахманова, УФН 184, 1045 (2014).
  3. K. S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M. I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov, Nature 438, 197 (2005).
  4. X. Liu and M.C. Hersam, Sci. Adv. 5 (2019); https://doi.org/10.1126/sciadv.aax6444.
  5. A. I. Kochaev, K.P. Katin, M.M. Maslov, and R.M. Meftakhutdinov, J. Phys. Chem. Lett. 11, 5668 (2020).
  6. A. I. Kochaev, M.M. Maslov, K.P. Katin, V. Efimov, and I. Efimova, Materials Today Nano. 20, 100247 (2022).
  7. Л.А. Чернозатонский, П.Б. Сорокин, А. Г. Квашнин, Д. Г. Квашнин, Письма в ЖЭТФ 90, 144 (2009).
  8. P.V. Bakharev, M. Huang, M. Saxena, S.W. Lee, S.H. Joo, S.O. Park, J. Dong, D.C. Camacho-Mojica, S. Jin, Y. Kwon, M. Biswal, F. Ding, S.K. Kwak, Z. Lee, and R. S. Ruoff, Nature Nanotechnol. 15, 59 (2019).
  9. L.A. Chernozatonskii, K.P. Katin, V.A. Demin, and M.M. Maslov, Appl. Surf. Sci. 537, 148011 (2021).
  10. T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Science 313, 951 (2006).
  11. Y. Cao, D. Chowdhury, D. Rodan-Legrain, O. Rubies-Bigorda, K. Watanabe, T. Taniguchi, T. Senthi, and P. Jarillo-Herrero, Phys. Rev. Lett. 124, 076801 (2020).
  12. Y. Cao, V. Fatemi, S. Fang, K.Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Nature 556, 43 (2018).
  13. G.E. Volovik, Письма в ЖЭТФ 107, 537 (2018).
  14. Y. Zhang, T. Tang, and C. Girit, Nature 459, 820 (2009).
  15. G. Fiori and G. Iannaccone, IEEE Electron Device Letters 30, 261 (2009).
  16. M.-C. Chen, C.-L. Hsu, and T.-J. Hsueh, IEEE Electron Device Letters 35, 590 (2014).
  17. Y. Tang, Z. Liu, and Z. Shen, Sens. Actuators B 238, 182 (2017).
  18. L.A. Chernozatonskii, V.A. Demin, and Ph. Lambin, Phys. Chem. Chem. Phys. 18, 27432 (2016).
  19. А.А. Артюх, Л.А. Чернозатонский, Письма в ЖЭТФ 109(7), 481 (2019).
  20. В.А. Демин, Д.Г. Квашнин, П. Ванчо, Г. Марк, Л.А. Чернозатонский, Письма в ЖЭТФ 112, 328 (2020).
  21. M.M. Maslov, A. I. Podlivaev, and K.P. Katin, Molecular Simulation 42, 305 (2016).
  22. K.P. Katin, K. S. Grishakov, A. I. Podlivaev, and M.M. Maslov, J. Chem. Theory Comput. 16, 2065 (2020).
  23. K.P. Katin and M.M. Maslov, J. Phys. Chem. Solids 108, 82 (2017).
  24. Л.А. Опенов, А.И. Подливаев, Письма в ЖЭТФ 109, 746 (2019).
  25. А.И. Подливаев, К.C. Гришаков, К.П. Катин, М.М. Маслов, Письма в ЖЭТФ 113, 182 (2021).
  26. А.И. Подливаев, К.C. Гришаков, К.П. Катин, М.М. Маслов, Письма в ЖЭТФ 114, 172 (2021).
  27. А.И. Подливаев, К.П. Катин, Письма в ЖЭТФ 92, 54 (2010).
  28. М.М. Маслов, К.П. Катин, А.И. Авхадиева, А.И. Подливаев, Химическая физика 33, 27 (2014).
  29. А.И. Подливаев, Письма в ЖЭТФ 115, 384 (2022).
  30. K.P. Katin and M.M. Maslov, Molecular Simulation 44, 703 (2018).
  31. Ю.С. Нечаев, Е.А. Денисов, Н.А. Шурыгина, А.О. Черетаева, Е.К. Костикова, С.Ю. Давыдов, Письма в ЖЭТФ 114, 372 (2021).
  32. А.И. Подливаев, Письма в ЖЭТФ 111, 728 (2020).
  33. F. Seitz and J. S. Koehler, Solid State Physics 2, 305 (1956).
  34. Химическая энциклопедия, под ред. И.Л. Кнунянц, в 5 т., Сов. энц., M. (1988) т. 1, 623 с.
  35. Е.И. Жмуриков, И.А. Бубненков, В. В. Дремов, С.И. Самарин, А.С. Покровский, Д.В. Харьков, Графит в науке и ядерной технике, Новосибирск (2013), 159 с.; https://arxiv.org/ftp/arxiv/papers/1307/1307.1869.pdf.
  36. B. Farbos, H. Freeman, T. Hardcastle, J.-P. Da Costa, R. Brydson, A. J. Scott, P. Weisbecker, C. Germain, G. L. Vignoles, and J.-M. Leyssale, Carbon 120, 111 (2017); https://doi.org/10.1016/j.carbon.2017.05.009
  37. E.M. Pearson, T. Halicioglu, and W.A. Tiller, Phys. Rev. A 32, 3030 (1985).
  38. G.V. Vineyard, J. Phys. Chem. Solids. 3, 121 (1957).
  39. А.М. Косевич, Основы механики кристаллической решетки, Наука, М. (1972).
  40. A.A. El-Barbary, Appl. Surf. Science 426, 238 (2017).
  41. R.H. Telling, C.P. Ewels, A.A. El-Barbary, and M. I. Heggie, Nat. Mater. 2(5), 333 (2003); https://doi.org/10.1038/nmat876.
  42. S.B. Isbill, A.E. Shields, D. J. Mattei-Lopez, R. J. Kapsimalis, and J. L. Niedziela, Comput. Mat. Sci. 195, 110477 (2021).
  43. L.M. Brown, A. Kelly, and R.M. Mayer, Philos. Mag. 19, 721 (1969).
  44. W.N. Reynolds and P.A. Thrower, Philos. Mag. 12, 573 (1965).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Российская академия наук, 2023