Manifestation of Memory and Butterfly in the Photon Echo on Erbium Ions in LuLiF4 and YLiF4

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The memory effect in the form of hysteresis has been detected in the measured dependence of the intensity of the photon echo in YLiF4 and LuLiF4 samples with Er3+ impurity ions on the orientation, strength, and variation direction of the magnetic field. The prehistory of the location of a sample in the magnetic field with a certain direction and strength is written and stored for no less than 6 h at a temperature of 2 K. The effect crucially depends on the orientation of the optical axis of the sample with respect to the external magnetic field.

Sobre autores

A. Shegeda

Zavoisky Physical Technical Institute, FRC Kazan Scientific Center, Russian Academy of Sciences

Email: shegedaam@gmail.com
420029, Kazan, Russia

S. Korableva

Kazan Federal University

Email: shegedaam@gmail.com
420008, Kazan, Russia

O. Morozov

Zavoisky Physical Technical Institute, FRC Kazan Scientific Center, Russian Academy of Sciences; Kazan Federal University

Email: shegedaam@gmail.com
420029, Kazan, Russia; 420008, Kazan, Russia

V. Lisin

Zavoisky Physical Technical Institute, FRC Kazan Scientific Center, Russian Academy of Sciences

Email: shegedaam@gmail.com
420029, Kazan, Russia

N. Solovarov

Zavoisky Physical Technical Institute, FRC Kazan Scientific Center, Russian Academy of Sciences

Email: shegedaam@gmail.com
420029, Kazan, Russia

V. Tarasov

Zavoisky Physical Technical Institute, FRC Kazan Scientific Center, Russian Academy of Sciences

Autor responsável pela correspondência
Email: shegedaam@gmail.com
420029, Kazan, Russia

Bibliografia

  1. C. W. Thiel, T. Bottger, and R. L. Cone, J. Lumin. 131, 353 (2011).
  2. A. Kinos, D. Hunger, R. Kolesov, K. Molmer, H. de Riedmatten, P. Goldner, A. Tallaire, L. Morvan, P. Berger, S. Welinski, Kh. Karrai, L. Rippe, S. Kroll, and A. Walther, ArXiv:2103.15743.
  3. N. Lauk, N. Sinclair, Sh. Barzanjeh, J. Covey, M. Sa man, M. Spiropulu, and Ch. Simon, Quantum Sci. Technol. 5, 020501 (2020).
  4. X. Fernandez-Gonzalvo, Y.-H. Chen, Ch. Yin, S. Rogge, and J. Longdell, Phys. Rev. B 92, 062313 (2015).
  5. M. Rancic, M. P. Hedges, R. L. Ahlefeldt, S. Rogge, and J. Longdell, Nature Phys. 14, 50 (2018).
  6. B. Car, L. Veissier, A. Louchet-Chauvet, J.-L. Le Gouet, and T. Chaneliere, Phys. Rev. Lett. 120, 197401 (2018).
  7. J. Ganem, Y. P. Wang, D. Boye, R. Meltzer, W. Yen, and R. MacFarlane, Phys. Rev. Lett. 66, 695 (1991).
  8. R. Wannemacher, R. M. MacFarlane, Y. P. Wang, D. Sox, D. Boyeand, and R. Meltzer, J. Lumin. 48-49, 309 (1991).
  9. R. M. MacFarlane, A. Cassanho, and R. S. Meltzer, Phys. Rev. Lett. 69, 542 (1992).
  10. Y. P. Wang, D. P. Landau, R. S. Meltzer, and R. Macfarlane, J. Opt. Soc. Am. B 9, 946 (1992).
  11. V. N. Lisin, V. V. Samartsev, A. M. Shegeda, V. Zuikov, and S. Korableva, Laser Phys. Lett. 3, 423 (2006).
  12. V. N. Lisin, A. M. Shegeda, and K. I. Gerasimov, JETP Lett. 95, 61 (2012).
  13. V. N. Lisin and A. M. Shegeda, JETP Lett. 96, 328 (2012).
  14. V. N. Lisin, A. M. Shegeda, and V. V. Samartsev, Laser Phys. Lett. 12, 025701 (2015).
  15. R. Marino, I. Lorgere, O. Guillot-Noel, H. Vezin, A. Toncelli, M. Tonelli, J.-L. Le Gouet, and P. Goldner, J. Lumin. 169, 478 (2016).
  16. K. I. Gerasimov, M. M. Minnegaliev, B. Z. Malkin, E. I. Baibekov, and S. A. Moiseev, Phys. Rev. B 94, 054429 (2016).
  17. M. M. Minnegaliev, E. I. Baibekov, K. I. Gerasimov, S. A. Moiseev, M. A. Smirnov, and R. V. Urmancheev, Quantum Electron. 47, 778 (2017).
  18. Y. H. Chen, X. Fernandez-Gonzalvo, S. P. Horvath, J. V. Rakonjac, and J. J. Longdell, Phys. Rev. B 97, 024419 (2018).
  19. M. M. Minnegaliev, I. V. Dyakonov, K. I. Gerasimov, A. A. Kalinkin, S P. Kulik, S. A. Moiseev, M. Yu. Saygin, and R. V. Urmancheev, Laser Phys. Lett. 15, 045207 (2018).
  20. M. N. Popova, S. A. Klimin, S. A. Moiseev, K. I. Gerasimov, M. M. Minnegaliev, E. I. Baibekov, G. S. Shakurov, M. Bettinelli, and M. C. Chou, Phys. Rev. B 99, 235151 (2019).
  21. B. Car, J.-L. Le Gouet, and T. Chaneliere, Phys. Rev. B 102, 115119 (2020).
  22. M. Rancic, M. Le Dantec, S. Lin, S. Bertaina, T. Chaneliere, D. Serrano, P. Goldner, R. B. Liu, E. Flurin, D. Esteve, D. Vion, and P. Bertet, ArXiv:2203.15012 [quant-ph].
  23. I. D. Abella, N. A. Kurnit, and S. R. Hartmann, Phys. Rev. 141, 391 (1966).
  24. D. Grischkowsky and S. R. Hartmann, Phys. Rev. B 2, 60 (1970).
  25. W. B. Mims, Phys. Rev. B 5, 2409 (1972).
  26. L. Q. Lambert, Phys. Rev. B 7, 1834 (1973).
  27. К. М. Салихов, А. Г. Семенов, Ю. Д. Цветков, Электронное спиновое эхо и его применение, Наука, Новосибирск (1976), гл. 5.
  28. P. Hu and S. R. Hartmann, Phys. Rev. B 9, 1 (1974).
  29. С. Л. Кораблева, ФТТ 20, 3701 (1978).
  30. W. G. Farr, M. Goryachev, J-M. le Floch, P. Bushev, and M. Tobar, Appl. Phys. Lett. 107, 122401 (2015).
  31. P. F. Liao, A. M. Glass, and L. M. Humphrey, Phys. Rev. B 22, 2276 (1980).
  32. С. А. Басун, А. А. Каплянский, С. П. Феофилов, ЖЭТФ 87, 2047 (1984).
  33. А. П. Пятаков, А. К. Звездин, УФН 182, 593 (2012).
  34. J. H. Jung, M. Matsubara, T. Arima, J. P. He, Y. Kaneko, and Y. Tokura, Phys. Rev. Lett. 93, 037403 (2004).
  35. S. Toyoda, N. Abe, S. Kimura, Y. Matsuda, T. Nomura, A. Ikeda, S. Takeyama, and T. Arima, Phys. Rev. Lett. 115, 267207 (2015).
  36. S. Toyoda, N. Abe, and T. Arima, Phys. Rev. B 93, 201109(R) (2016).
  37. А. Р. Нурмухаметов, М. В. Еремин, ЖЭТФ 162, 390 (2022).
  38. К. В. Васин, М. В. Еремин, А. Р. Нурмухаметов, Письма в ЖЭТФ 115, 420 (2022).
  39. V. N. Lisin, V. V. Samartsev, A. M. Shegeda, V. A. Zuikov, and Yu. K. Rosencwage, Laser Physics. 17(2), 87 (2007).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Российская академия наук, 2023