New Objects in Scattering Theory with Symmetries

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider 1D quantum scattering problem for a Hamiltonian with symmetries. We show that the proper treatment of symmetries in the spirit of homological algebra leads to new objects, generalizing the well-known T- and K-matrices. Homological treatment implies that old objects and new ones are to be combined in a differential. This differential arises from homotopy transfer of induced interaction and symmetries on solutions of free equations of motion. Therefore, old and new objects satisfy remarkable quadratic equations. We construct an explicit example in SUSY QM on a circle demonstrating nontriviality of the above relation.

作者简介

A. Losev

Wu Wen-Tsun Key Lab of Mathematics, Chinese Academy of Sciences, 230026, Hefei, People’s Republic of China; National Research University Higher School of Economics, 119048, Moscow, Russia

Email: aslosev2@yandex.ru

T. Sulimov

Petersburg Branch, Steklov Mathematical Institute, Russian Academy of Sciences, 191023, St. Petersburg, Russia

编辑信件的主要联系方式.
Email: optimus260@gmail.com

参考

  1. J.R. Taylor, Scattering Theory: The Quantum Theory of Nonrelativistic Collisions, John Wiley and Sons, Inc., N. Y. (1972), ch. 3 and 14 (section e).
  2. R.G. Newton, Scattering Theory of Waves and Particles, Springer, Berlin, Heidelberg (1982), � 11.3.2.
  3. A. Losev, TQFT, homological algebra and elements of K. Saito's theory of Primitive form: an attempt of mathematical text written by mathematical physicist, in Primitive Forms and Related Subjects-Kavli IPMU 2014, Mathematical Society of Japan (2019), p. 269; e-Print: 2301.01390.
  4. A. S. Arvanitakis, O. Hohm, C. Hull, and V. Lekeu, Fortsch. Phys. 70(2-3), 2200003 (2022); doi: 10.1002/prop.202200003; arXiv:2007.07942 [hep-th].
  5. F. Cooper, A. Khare, and U. Sukhatme, Phys. Rep. 251, 267 (1995); doi: 10.1016/0370-1573(94)00080-M; arXiv:hep-th/9405029 [hep-th].

补充文件

附件文件
动作
1. JATS XML

版权所有 © Российская академия наук, 2023