Resistive Switching Effect in TaN/HfOx/Ni Memristors with a Filament Formed under Local Electron-Beam Crystallization

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The influence of an intense electron beam on a nonstoichiometric oxide HfOx (х@) layer of a TaN/HfOx/Ni memristor on its electrophysical properties is studied. It is found that the crystalline h-Hf, m‑HfO2, o-HfO2, and t-HfO2 phases are formed in the HfOx film under this impact. It is established that memristors demonstrate resistive switching at certain electron fluence values. At the same time, such memristors have resistive switching voltages several times lower than those of unirradiated memristors. In addition, they exhibit a multiple decrease in the spread of resistive switching voltages, as well as resistances in low- and high-resistance states. The current–voltage curves of the obtained memristors indicate that the charge transport in them is described by the space-charge-limited current mechanism.

作者简介

V. Voronkovskiy

Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia

Email: voronkovskii@isp.nsc.ru

A. Gerasimova

Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia

Email: voronkovskii@isp.nsc.ru

V. Aliev

Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia; Novosibirsk State Technical University, 630073, Novosibirsk, Russia

编辑信件的主要联系方式.
Email: voronkovskii@isp.nsc.ru

参考

  1. D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X. S. Li, G. S. Park, B. Lee, S. Han, M. Kim and C. S. Hwang, Nat. Nanotechnol. 5, 148 (2010).
  2. F. Miao, J. P. Strachan, J. J. Yang, M. X. Zhang, I. Goldfarb, A. C. Torrezan, P. Eschbach, R. D. Kelley, G. Medeiros-Ribeiro, and R. S. Williams, Adv. Mater. 23, 5633 (2011).
  3. Q. Liu, J. Sun, H. Lv, S. Long, K. Yin, N. Wan, Y. Li, L. Sun, and M. Liu, Adv. Mater. 24, 1844 (2012).
  4. I. Valov, Semicond, Sci. and Technol. 32, 093006 (2017).
  5. Y. Zhang, Z. Wang, J. Zhu, Y. Yang, M. Rao, W. Song, Y. Zhuo, X. Zhang, M. Cui, L. Shen, and R. Huang, Appl. Phys. Lett. 7, 011308 (2020).
  6. Y. Y. Chen, IEEE T. Electron. Dev. 67, 1420 (2020).
  7. A. Hardtdegen, H. Zhang, and S. Ho mann-Eifert, ECS Transactions 75, 177 (2016).
  8. J. Wang, L. Li, H. Huyan, X. Pan, and S. S. Nonnenmann, Adv. Funct. Mater. 29, 1808430 (2019).
  9. E. Wu, T. Ando, Y. Kim, R. Muralidhar, E. Cartier, P. Jamison, M. Wang, and V. Narayanan, Appl. Phys. Lett. 116, 082901 (2020).
  10. P. Bousoulas and D. Tsoukalas, Int. J. High Speed Electron. Syst. 25, 1640007 (2016).
  11. A. K. Gerasimova, V. S. Aliev, G. K. Krivyakin, and V. A. Voronkovskii, SN Appl. Sci. 2, 1 (2020).
  12. V. A. Voronkovskii, V. S. Aliev, A. K. Gerasimova, and D. R. Islamov, Mat. Res. Express 6, 076411 (2019).
  13. V. A. Voronkovskii, V. S. Aliev, A. K. Gerasimova, and D. R. Islamov, Mat. Res. Express 5, 016402 (2018).
  14. K. A. Kanaya and S. Okayama, J. Phys. D: Appl. Phys. 5, 43 (1972).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Российская академия наук, 2023