Crossover from relativistic to non-relativistic net magnetization for MnTe altermagnet candidate

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We experimentally study magnetization reversal curves for MnTe single crystals, which is the altermagnetic candidate. Above 85 K temperature, we confirm the antiferromagnetic behavior of magnetization M, which is known for α-MnTe. Below 85 K, we observe anomalous low-field magnetization behavior, which is accompanied by the sophisticated M(α) angle dependence with beating pattern as the interplay between M(α) maxima and minima: in low fields, M(α) shows ferromagnetic-like 180° periodicity, while at high magnetic fields, the periodicity is changed to the 90° one. This angle dependence is the most striking result of our experiment, while it can not be expected for standard magnetic systems. In contrast, in altermagnets, symmetry allows ferromagnetic behavior only due to the spin-orbit coupling. Thus, we claim that our experiment shows the effect of weak spin-orbit coupling in MnTe, with crossover from relativistic to non-relativistic net magnetization, and, therefore, we experimentally confirm altermagnetism in MnTe.

作者简介

N. Orlova

Institute of Solid State Physics of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: honna@issp.ac.ru
Chernogolovka, Russia

A. Avakyants

Institute of Solid State Physics of the Russian Academy of Sciences

Email: honna@issp.ac.ru
Chernogolovka, Russia

A. Timonina

Institute of Solid State Physics of the Russian Academy of Sciences

Email: honna@issp.ac.ru
Chernogolovka, Russia

N. Kolesnikov

Institute of Solid State Physics of the Russian Academy of Sciences

Email: honna@issp.ac.ru
Chernogolovka, Russia

E. Deviatov

Institute of Solid State Physics of the Russian Academy of Sciences

Email: honna@issp.ac.ru
Chernogolovka, Russia

参考

  1. L. Smejkal, J. Sinova, and T. Jungwirth, Phys. Rev. X 12, 031042 (2022).
  2. I. Mazin, Phys. Rev. X 12, 040002 (2022); 10.1103/PhysRevX.12.040002.
  3. J. A. Ouassou, A. Brataas, and J. Linder, Phys. Rev. Lett. 131, 076003 (2023); https://doi.org/10.1103/PhysRevLett.131.076003.
  4. I. I. Mazin, arxiv:2203.05000.
  5. S. Das, Dh. Suri, and A. Soori, J. Phys. : Condens. Matter 35, 435302 (2023); https://doi.org/10.1088/1361-648X/acea12.
  6. R. D. Gonzalez Betancourt, J. Zubac, R. Gonzalez-Hernandez, K. Geishendorf, Z. Soban, G. Springholz, K. Olejnik, L. Smejkal, J. Sinova, T. Jungwirth, S. T. B. Goennenwein, A. Thomas, H. Reichlova, J. Zelezny, and D. Kriegner, Phys. Rev. Lett. 130, 036702 (2023).
  7. L. Smejkal, R. Gonzalez-Hernandez, T. Jungwirth, and J. Sinova, Sci. Adv. 6, eaaz8809 (2020).
  8. S. Hayami and H. Kusunose, Phys. Rev. B 103, L180407 (2021).
  9. K. P. Kluczyk, K. Gas, M. J. Grzybowski, P. Skupinski, M. A. Borysiewicz, T. Fas, J. Suffczynski, J.Z. Domagala, K. Grasza, A. Mycielski, M. Baj, K. H. Ahn, K. Výborný, M. Sawicki, and M. Gryglas-Borysiewicz, arXiv:2310.09134.
  10. I. I. Mazin, Phys. Rev. B 107, L100418 (2023).
  11. S.-W. Cheong and F.-T. Huang, npj Quantum Mater. 9, 13 (2024); https://doi.org/10.1038/s41535-024-00626-6; arxiv: 2401.13069.
  12. M. Hajlaoui, S. W. D’Souza, L. Smejkal et al. (Collaboration), arXiv:2401.09187.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Российская академия наук, 2024