Особенности электронной структуры кислороддефицитных перовскитов SrFe1 – xMoxO3 – y
- Авторы: Гайнутдинов И.И.1
 - 
							Учреждения: 
							
- Институт химии твердого тела и механохимии СО РАН
 
 - Выпуск: Том 59, № 4 (2023)
 - Страницы: 187-192
 - Раздел: Статьи
 - URL: https://rjonco.com/0424-8570/article/view/671046
 - DOI: https://doi.org/10.31857/S0424857023040060
 - EDN: https://elibrary.ru/AOEBVF
 - ID: 671046
 
Цитировать
Полный текст
Аннотация
С помощью пакета VASP в рамках подхода DFT проведены расчеты свойств основного состояния оксида со структурой перовскита SrFe1 – xMoxO3 – y для различных значений содержания молибдена и кислородной нестехиометрии. Показано, что допирование, как и изменение содержания кислорода, приводит к изменению зарядового состояния ионов кислорода в системе, при этом уровень Ферми смещается относительно неизменной структуры зон (rigid band model), и происходит переход к полуметаллическому типу проводимости.
Ключевые слова
Об авторах
И. И. Гайнутдинов
Институт химии твердого тела и механохимии СО РАН
							Автор, ответственный за переписку.
							Email: ur1742@solid.nsc.ru
				                					                																			                												                								Россия, Новосибирск						
Список литературы
- Волошин, Б.В., Кошевой, Е.И., Улихин, А.С., Попов, М.П., Немудрый, А.П. Модификация катодного материала La0.6Sr0.4Co0.2Fe0.8O3 – δ сегнетоактивным катионом молибдена. Электрохимия. 2022. Т. 58. С. 116. [Voloshin, B.V., Koshevoi, E.I., Ulihin, A.S., Popov, M.P., and Nemudry, A.P., Modifying the La0.6Sr0.4Co0.2Fe0.8O3 – δ Cathodic Material by Ferroactive Molybdenum Cation, Russ. J. Electrochem., 2022, vol. 58, p. 163.] https://doi.org/10.1134/S1023193522020112
 - Bragina, O.A. and Nemudry, A.P., Influence of Mo-doping on structure and oxygen permeation properties of SrCo0.8 – xFe0.2MoxO3 – δ perovskite membranes for oxygen separation, J. Membrane Sci., 2017, vol. 539, p. 313. https://doi.org/10.1016/j.memsci.2017.06.018
 - Kresse, G. and Furthmuller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B: Condens. Matter Mater. Phys., 1996, vol. 54, p. 11169.
 - Das, T., Nicholas, J.D., and Qi, Y., Long-range charge transfer and oxygen vacancy interactions in strontium ferrite, J. Mater. Chem. A, 2017, vol. 5, p. 4493. https://doi.org/10.1039/c6ta10357j
 - Perdew, J.P., Burke, K., and Ernzerhof, M., Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 1996, vol. 77, p. 3865.
 - Tang, W., Sanville, E., and Henkelman, G., A grid-based Bader analysis algorithm without lattice bias, J. Phys.: Compute Mater., 2009, vol. 21, p. 084204.
 - Kotomin, E.A., Mastrikov, Yu.A., Kuklja, M.M., Merkle, R., Roytburd, A., and Maier, J., First principles calculations of oxygen vacancy formation and migration in mixed conducting Ba0.5Sr0.5Co1 – yFeyO3 – δ perovskites, Solid State Ionics, 2011, vol. 188, p. 1.
 - Wang, T.-H. and Searle, T.M., A rigid band model for recombination in a-Si alloys, J. Non-Crystalline Solids, 1996, vol. 198, p. 280.
 
Дополнительные файлы
				
			
						
						
						
					
						
									








