Квантово-химическое исследование активации связи С–Н в метане на оксидных и сульфидных кластерах Ni–Cu

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Методом функционала плотности PBE проведено моделирование разрыва связи С–Н в метане на Ni–Cu-кластерах, обогащенных медью, как первой стадии каталитической углекислотной конверсии метана. В качестве моделей катализаторов рассмотрены наноразмерные кластеры NiCu11S6(PH3)8, NiCu11S6, NiCu11O6(PH3)8, NiCu11O6. Рассчитана энергия связи метана с кластерами и определена энергия активация стадии \({\text{CH}}_{4}^{*}\)\({\text{CH}}_{3}^{*}\) + H*. На основании полученных данных установлено, что каталитическая система NiCu11O6 является наиболее перспективной для активации CH4 как в кинетическом (энергия активации равна 99 кДж/моль), так и в термодинамическом отношении (изменение энергии стадии равно –29 кДж/моль). С целью оценки стабильности кластера NiCu11O6 к зауглероживанию проведено моделирование адсорбции CH с последующей диссоциацией (CH* → C* + H*). Рассчитанное значение энергии активации данной стадии достаточно высокое, 159 кДж/моль.

Об авторах

П. С. Бандурист

ФГБОУ ВО Московский государственный университет имени М.В. Ломоносова, Химический факультет

Автор, ответственный за переписку.
Email: banduristpavel@gmail.com
Россия, 119991, Москва, Ленинские горы, 1, стр. 3

Д. А. Пичугина

ФГБОУ ВО Московский государственный университет имени М.В. Ломоносова, Химический факультет

Email: banduristpavel@gmail.com
Россия, 119991, Москва, Ленинские горы, 1, стр. 3

Список литературы

  1. Olivos-Suarez A.I., Szécsényi À., Hensen E.J.M., Ruiz-Martinez J., Pidko E.A., Gascon J. // ACS Catal. 2016. V. 6. P. 2965. https://doi.org/10.1021/acscatal.6b00428
  2. Franz R., Uslamin E.A., Pidko E.A. // Mendeleev Commun. 2021. V. 31. P. 584. https://doi.org/10.1016/j.mencom.2021.09.002
  3. Wang L., Wang F. // Energy Fuels. 2022. V. 36. P. 5594. https://doi.org/10.1021/acs.energyfuels.2c01007
  4. Wittich K., Krämer M., Bottke N., Schunk S.A. // ChemCatChem. 2020. V. 12. P. 2130. https://doi.org/10.1002/cctc.201902142
  5. de Medeiros F.G.M., Lopes F.W.B., de Vasconcelos B.R. // Catalysts. 2022. V. 12. P. 363. https://doi.org/10.3390/catal12040363
  6. le Saché E., Reina T.R. // Prog. Energy Combust. Sci. 2022. V. 89. P. 100970. https://doi.org/10.1016/j.pecs.2021.100970
  7. Zhang G., Liu J., Xu Y., Sun Y. // Int. J. Hydrog. Energy. 2018. V. 43. P. 15030. https://doi.org/10.1016/j.ijhydene.2018.06.091
  8. Parsapur R.K., Chatterjee S., Huang K.-W. // ACS Energy Lett. 2020. V. 5. P. 2881. https://doi.org/10.1021/acsenergylett.0c01635
  9. Садыков В.А., Симонов М.Н., Беспалко Ю.Н., Боброва Л.Н., Еремеев Н.Ф., Арапова М.В., Смаль Е.А., Мезенцева Н.В., Павлова С.Н. // Кинетика и катализ. 2019. Т. 60. № 5. С. 588. (Sadykov V.A., Simonov M.N., Bespalko Y.N., Bobrova L.N., Eremeev N.F., Arapova M.V., Smal’ E.A., Mesentseva N.V., Pavlova S.N. // Kinet. Catal. 2019. V. 60. № 5. P. 582. https://doi.org/10.1134/S002315841905008210.1134/S0023158419050082)https://doi.org/10.1134/S0453881119050095
  10. Song Y., Ozdemir E., Ramesh S., Adishev A., Subramanian S., Harale A., Albuali M., Fadhel B.A., Jamal A., Moon D., Choi S.H., Yavuz C.T. // Science. V. 367. 2020. P. 777. https://doi.org/10.1126/science.aav2412
  11. Le Saché E., Pastor-Perez L., Watson D., Sepulveda-Escribano A., Reina T.R. // Appl. Catal. B: Env. 2018. V. 236. P. 458. https://doi.org/10.1016/j.apcatb.2018.05.051
  12. Волнина Э.А., Кипнис М.А. // Кинетика и катализ. 2020. Т. 61. № 1. С. 107. https://doi.org/ (Volnina E.A., Kipnis M.A. // Kinet. Catal. 2020. V. 61. № 1. P. 119. https://doi.org/10.1134/S002315842001011510.1134/S0023158420010115)https://doi.org/10.31857/S045388112001013X
  13. Álvarez A., Bansode A., Urakawa A., Bavykina A.V., Wezendonk T.A., Makkee M., Gascon J., Kapteijn F. // Chem. Rev. 2017. V. 117. P. 9804. https://doi.org/10.1021/acs.chemrev.6b00816
  14. Mahmoudi H., Mahmoudi M., Doustdar O., Jahangiri H., Tsolakis A., Gu S., Wyszynski M.L. // Biofuels Eng. 2017. V. 2. P. 11. https://doi.org/10.1515/bfuel-2017-0002
  15. Pakhare D., Spivey J. // Chem. Soc. Rev. 2014. V. 43. P. 7813. https://doi.org/10.1039/C3CS60395D
  16. Rezaei M., Alavi S.M., Sahebdelfar S., Yan Z.F. // J. Nat. Gas. Chem. 2006. V. 15. P. 327. https://doi.org/10.1016/S1003-9953(07)60014-0
  17. Barama S., Dupeyrat-Batiot C., Capron M., Bordes-Richard E., Bakhti-Mohammedi O. // Catal. Today. 2009. V. 141. P. 385. https://doi.org/10.1016/j.cattod.2008.06.025
  18. Ferreira-Aparicio P., Guerrero-Ruiz A., Rodriquez-Ramos I. // Appl. Catal. A: Gen. 1998. V. 170. P. 177. https://doi.org/10.1016/S0926-860X(98)00048-9
  19. Hou Z., Chen P., Fang H., Zheng X., Yashima T. // Int. J. Hydrog. Energy. 2006. V. 31. P. 555. https://doi.org/10.1016/j.ijhydene.2005.06.010
  20. Aramouni N.A.K., Touma J.G., Tarboush B.A., Zeaiter J., Ahmad M.N. // Renew. Sustain. Energy Rev. 2018. V. 82. P. 2570. https://doi.org/10.1016/j.rser.2017.09.076
  21. Abdulrasheed A., Jalil A.A., Gambo Y., Ibrahim M., Hambali H.U., Shahul Hamid M.Y. // Renew. Sustain. Energy Rev. 2019. V. 108. P. 175. https://doi.org/10.1016/j.rser.2019.03.054
  22. Goula M.A., Charisiou N.D., Siakavelas G., Tzounis L., Tsiaoussis I., Panagiotopoulou P., Goula G., Yentekakis I.V. // Int. J. Hydrog. Energy. 2017. V. 42. P. 13724. https://doi.org/10.1016/j.ijhydene.2016.11.196
  23. Zhang W.D., Liu B.S., Tian Y.L. // Catal. Comm. 2007. V. 8. P. 661. https://doi.org/10.1016/j.catcom.2006.08.020
  24. Yu X., Zhang F., Chu W. // RSC Adv. 2016 V. 6. P. 70 537. https://doi.org/10.1039/C6RA12335J
  25. le Saché E., Johnson S., Pastor-Perez L., Horri B.A., Reina T.R. // Energies. 2019. V. 12. P. 1007. https://doi.org/10.3390/en12061007
  26. Song Z., Wang Q., Guo C., Li S., Yan W., Jiao W., Qiu L., Yan X., Li R. // Ind. Eng. Chem. Res. 2020. V. 59. P. 17 250. https://doi.org/10.1021/acs.iecr.0c01204
  27. Crisafulli C., Scirè S., Maggiore R., Minicò S., Galvagno S. // Catal. Let. 1999. V. 59. P. 21. https://doi.org/10.1023/A:1019031412713
  28. García-Diéguez M., Pieta I.S., Herrera M.C., Larrubia M.A., Alemany L.J. // Catal. Today. 2011. V. 172. P. 136. https://doi.org/10.1016/j.cattod.2011.02.012
  29. Mahoney E.G., Pusel J.M., Stagg-Williams S.M., Faraji S. // J. CO2 Util. 2014. V. 6. P. 40. https://doi.org/10.1016/j.jcou.2014.01.003
  30. Huang T., Huang W., Huang J., Ji P. // Fuel Process. Technol. 2011. V. 92. P. 1868. https://doi.org/10.1016/j.fuproc.2011.05.002
  31. Chatla A., Ghouri M.M., El Hassan O.W., Mohamed N., Prakash A.V., Elbashir N.O. // Appl. Catal. A: Gen. 2020. V. 602. P. 117699. https://doi.org/10.1016/j.apcata.2020.117699
  32. Franz R., Pinto D., Uslamin E.A., Urakawa A., Pidko E.A. // ChemCatChem. 2021. V. 13. P. 5034. https://doi.org/10.1002/cctc.202101080
  33. Franz R., Kühlewind T., Shterk G., Abou-Hamad E., Parastaev A., Uslamin E., Hensen E.J.M., Kapteijn F., Gascon J., Pidko E.A. // Catal. Sci. Technol. 2020. V. 10. P. 3965. https://doi.org/10.1039/D0CY00817F
  34. Zhang X., Vajglova Z., Mäki-Arvela P., Peurla M., Palonen H., Murzin D.Yu., Tungatarova S.A., Baizhumanova T.S., Aubakirov Y.A. // ChemistrySelect. 2021. V. 6. P. 3424. https://doi.org/10.1002/slct.202100686
  35. Gawande M.B., Goswami A., Felpin F.-X., Asefa T., Huang X., Silva R., Zou X., Zboril R., Varma R.S. // Chem. Rev. 2016. V. 116. P. 3722. https://doi.org/10.1021/acs.chemrev.5b00482
  36. Wang M., Fu Z., Yang Z. // Phys. Lett. A. 2013. V. 377. P. 2189. https://doi.org/10.1016/j.physleta.2013.05.054
  37. An W., Zeng X.C., Turner C.H. // J. Chem. Phys. 2009. V. 131. P. 174702. https://doi.org/10.1063/1.3254383
  38. Omran A., Yoon S.H., Khan M., Ghouri M., Chatla A., Elbashir N. // Catalysts. 2020. V. 10. P. 1043. https://doi.org/10.3390/catal10091043
  39. Qiu H., Ran J., Niu J., Guo F., Ou Z. // Mol. Catal. 2021. V. 502. P. 111360. https://doi.org/10.1016/j.mcat.2020.111360
  40. Liu H., Zhang R., Yan R., Li J., Wang B., Xie K. // Appl. Surf. Sci. 2012. V. 258. P. 8177. https://doi.org/10.1016/j.apsusc.2012.05.017
  41. Zhang R., Guo X., Wang B., Ling L. // J. Phys. Chem. C. 2015. V. 119. P. 14135. https://doi.org/10.1021/acs.jpcc.5b03868
  42. Xiao Z., Hou F., Zhang J., Zheng Q., Xu J., Pan L., Wang L., Zou J., Zhang X., Li G. // ACS Appl. Mater. Interfaces. 2021. V. 13. P. 48838. https://doi.org/10.1021/acsami.1c14918
  43. Lee J.-H., Lee E.-G., Joo O.-S., Jung K.-D. // Appl. Catal. A: Gen. 2004. V. 269. P. 1. https://doi.org/10.1016/j.apcata.2004.01.035
  44. Chen H.-W., Wang C.-Y., Yu C.-H., Tseng L.-T., Liao P.-H. // Catal. Today. 2004. V. 97. P. 173. https://doi.org/10.1016/j.cattod.2004.03.067
  45. Wu T., Cai W., Zhang P., Song X., Gao L. // RSC Adv. 2013. V. 3. P. 23976. https://doi.org/10.1039/c3ra43203c
  46. Li B., Xu Z., Jing F., Luo S., Wang N., Chu W. // J. Energy Chem. 2016. V. 25. P. 1078. https://doi.org/10.1016/j.jechem.2016.11.001
  47. Nataj S.M.M, Alavi S.M., Mazloom G. // J. Energy Chem. 2018. V. 27. P. 1475. https://doi.org/10.1016/j.jechem.2017.10.002
  48. Song K., Lu M., Xu S., Chen C., Zhan Y., Li D., Au C., Jiang L., Tomishige K. // Appl. Catal. B: Env. 2018. V. 239. P. 324. https://doi.org/10.1016/j.apcatb.2018.08.023
  49. Rezaei R., Moradi G., Sharifnia S. // Energy Fuels. 2019. V. 33. P. 6689. https://doi.org/10.1021/acs.energyfuels.9b00692
  50. Yang Y., Lin Y.-A., Yan X., Chen F., Shen Q., Zhang L., Yan N. // ACS Appl. Energy Mater. 2019. V. 2. P. 8894. https://doi.org/10.1021/acsaem.9b01923
  51. Han K., Wang S., Liu Q., Wang F. // ACS Appl. Nano Mater. 2021. V. 4. P. 5340. https://doi.org/10.1021/acsanm.1c00673
  52. Han K., Wang S., Hu N., Shi W., Wang F. // ACS Appl. Mater. Interfaces. 2022. V. 14. P. 23487. https://doi.org/10.1021/acsami.2c03757
  53. Rahemi N., Haghighi M., Babaluo A.A., Allahyari S., Jafari M.F. // Energy Convers. Manag. 2014. V. 84. P. 50. https://doi.org/10.1016/j.enconman.2014.04.016
  54. Wu T., Zhang Q., Cai W., Zhang P., Song X., Sun Z., Gao L. // Appl. Catal. A: Gen. 2015. V. 503. P. 94. https://doi.org/10.1016/j.apcata.2015.07.012
  55. Bian Z., Das S., Wai M.H., Hongmanorom P., Kawi S. // ChemPhysChem. 2017. V. 18. P. 3117. https://doi.org/10.1002/cphc.201700529
  56. Kolganov A.A., Gabrienko A.A., Chernyshov I.Yu., Stepanov A.G. Pidko E.A. // Phys. Chem. Chem. Phys. 2022. V. 24. P. 6492. https://doi.org/10.1039/D1CP05854A
  57. Dehnen S., Schläfer A., Fenske D., Ahlrichs R. // Angew. Chem. 1994. V. 106. P. 786. https://doi.org/10.1002/ange.19941060713
  58. Dehnen S., Fenske D., Deveson A.C. // J. Clust. Sci. 1996. V. 7. P. 351. https://doi.org/10.1007/BF01171188
  59. Пичугина Д.А., Кузьменко Н.Е., Шестаков А.Ф. // Успехи химии. 2015. Т. 84. С. 1114. (Pichugina D.A., Kuz’menko N.E., Shestakov A.F. // Russ. Chem. Rev. 2015. V. 84. P. 1114. )https://doi.org/10.1070/RCR4493
  60. Perdew J.P., Ernzerhof M., Burke K. // J. Chem. Phys. 1996. V. 105. P. 9982. https://doi.org/10.1063/1.472933
  61. Laikov D.N. // Chem. Phys. Lett. 2005. V. 416. P. 116. https://doi.org/10.1016/j.cplett.2005.09.046
  62. Schlegel H.B. // J. Comput. Chem. 1982. V. 3. P. 214. https://doi.org/10.1002/jcc.540030212
  63. Лайков Д.Н., Устынюк Ю.А. // Изв. АН. Сер. хим. 2005. № 3. С. 804. (Laikov D.N., Ustynyuk Yu.A. // Russ. Chem. Bull. 2005. № 3. P. 820.)
  64. Chen T., Fang L., Luo W., Meng Y., Xue J., Xia S., Ni Z. // Chem. J. Chin. Univ. 2019. V. 40. P. 2135. https://doi.org/10.7503/cjcu20190267
  65. Zhang L., Meng Y., Yang J., Shen H., Yang C., Xie B., Xia S. // Fuel. 2021. V. 303. P. 121263. https://doi.org/10.1016/j.fuel.2021.121263

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (845KB)
3.

Скачать (359KB)
4.

Скачать (532KB)
5.

Скачать (343KB)

© П.С. Бандурист, Д.А. Пичугина, 2023