Structural Kinetic Model and Mechanism of Methylcyclohexane Dehydrogenation over Pt,Sn/γ-Al2O3 Catalyst

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The kinetic regularities of methylcyclohexane dehydrogenation into toluene and hydrogen on the supported Pt,Sn/γ-Al2O3 catalyst in the gas phase have been studied in detail. Based on the results of kinetic experiments, using the advancement and discrimination of hypotheses, an adequate structural kinetic model of the reversible process has been created. It is based on a mechanism that includes four routes involving the bifunctional active center of the catalyst and its two adsorption complexes: with hydrogen and with toluene.

全文:

受限制的访问

作者简介

А. Lozhkin

MIREA – Russian Technological University; Hydrogen Technologies Center LLC

编辑信件的主要联系方式.
Email: promchemie@gmail.com
俄罗斯联邦, Moscow; Moscow

E. Katsman

MIREA – Russian Technological University

Email: promchemie@gmail.com
俄罗斯联邦, Moscow

L. Bruk

MIREA – Russian Technological University

Email: lgbruk@mail.ru
俄罗斯联邦, Moscow

参考

  1. Okada Y., Sasaki E., Watanabe E., Hyodo S., Nishijima H. // Int. J. Hydrogen Energy. 2006. V. 31. P. 1348.
  2. Kustov L.M., Kalenchuk A.N., Bogdan V.I. // Russ. Chem. Rev. 2020. V. 89. № 9. Р. 897.
  3. Lozhkin A.D., Iskhakova L.D., Milovich F.O., Katsman E.A., Bruk L.G. // Kinet. Catal. 2024. V. 65. № 3. P. 280.
  4. Pande J., Shukla A., Biniwale R. // Int. J. Hydrogen Energy. 2012. V. 37. P. 6756.
  5. Kou Z., Zhi Z., Xu G., An Y., He C. Appl. Catal. A: Gen. 2013. V. 467. P. 196.
  6. Li J., Chai Y., Liu B., Wu Y., Li X., Tang Z., Liu Y., Liu C. // Appl. Catal. A: Gen. 2014. V. 469. P. 434.
  7. Ping H., Xu G., Wu S. // Int. J. Hydrogen Energy. 2015. V. 40. P. 15923.
  8. Kreuder H., Boeltken T., Cholewa M., Meier J., Pfeifer P. // Int. J. Hydrogen Energy. 2016. V. 41. P. 12082.
  9. Tuo Y., Shi L., Cheng H., Zhu Y., Yang M., Xu J., Han Y., Li P., Yuan W. // J. Catal. 2018. V. 360. P. 175.
  10. Boufaden N., Akkari R., Pawelec B., Fierro J.L.G., Said Zina M., Ghorbel A. // J. Mol. Catal. A: Chem. 2016. V. 420. P. 96.
  11. Xia K., Lang W., Li P., Yan X., Guo Y. // J. Catal. 2016. V. 338. P. 104.
  12. Xia Z., Lu H., Liu H., Zhang Z., Chen Y. // Catal. Commun. 2017. V. 90. P. 39.
  13. Nakano A., Manabe S., Higo T., Seki H., Nagatake S., Yabe T., Ogo S., Nagatsuka T., Sugiura Y., Iki H., Sekine Y. // Appl. Catal. A: Gen. 2017. V. 543. P. 75.
  14. Li B., Xu Z., Jing F., Luo S., Wang N., Chu W. // Appl. Catal. A: Gen. 2017. V. 533. P. 17.
  15. Deng L., Arakawa T., Ohkubo T., Miura H., Shishido T., Hosokawa S., Teramura K., Tanaka T. // Ind. Eng. Chem. Res. 2017. V. 56. P. 7160.
  16. Xia Z., Liu H., Lu H., Zhang Z., Chen Y. // Appl. Surf. Sci. 2017. V. 422. P. 905.
  17. Yu J., Ge Q., Fang W., Xu H. // Int. J. Hydrogen Energy. 2011. V. 36. P. 11536.
  18. Dong A., Wang K., Zhu S., Yang G., Wang X. // Fuel Process Technol. 2017. V. 158. P. 218.
  19. Du J., Zhao R., Jiao G. // Int. J. Hydrogen Energy. 2013. V. 38. P. 5789.
  20. Li X., Tuo Y., Jiang H., Duan X., Yu X., Li P. // Int. J. Hydrogen Energy. 2015. V. 40. P. 12217.
  21. Shi L., Liu X., Tuo Y., Xu J., Li P. // Int. J. Hydrogen Energy. 2017. V. 42. P. 17403.
  22. Kariya N., Fukuoka A., Ichikawa M. // Appl. Catal. A: Gen. 2002. V. 233. P. 91.
  23. Scherer G.W.H., Newson E., Wokaun A. // Int. J. Hydrogen Energy. 1999. V. 24. P. 1157.
  24. Sinfelt J.H. // J. Mol. Catal. A. Chem. 2000. V. 163. P. 123.
  25. Akram M.S., Aslam R., Alhumaidan F.S., Usman M.R. // Int. J. Chem. Kinet. 2020. V. 52. P. 415.
  26. Alhumaidan F., Cresswell D., Garforth A. // Ind. Eng. Chem. Res. 2011. V. 50. P. 2509.
  27. Usman M.S. Kinetics of Methylcyclohexane Dehydrogenation and Reactor Simulation for “On-board” Hydrogen Storage. PhD Thesis. The University of Manchester, 2010. 299 p.
  28. Gorskii V.G., Katsman E.A., Klebanova F.D., Grigorev A.A. // Theor. Exp. Chem. 1987. V. 23. P. 181.
  29. Темкин О.Н., Брук Л.Г., Зейгарник А.В. // Кинетика и катализ. 1993. T. 34. C. 445.
  30. Fischer A., Iglesia E. Mechanistic Interpretations and Consequences of Hydrogen Spillover in Toluene Hydrogenation Catalysis. AIChE Annual Meeting, 2018.

补充文件

附件文件
动作
1. JATS XML
2. Scheme 1. Kinetic graph of the mechanism of dehydrogenation of M in T

下载 (127KB)
3. Fig. 1. Comparison of calculated and experimental values of the degree of transformation of M in T at temperatures 220 (•) and 260°C (▲)

下载 (164KB)