Chitosan-based functional coatings for postharvest processing of tomatoes

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The review article includes information on the use of coatings, both from chitosan itself and in combination with other polysaccharides and functional compounds, for postharvest processing, mainly of tomatoes, to extend the shelf life of harvested produce. During harvesting of fruits and vegetables, losses due to fungal infection can be as high as 50%. To prevent yield losses and preserve fruit quality, various methods of postharvest treatment are used. Currently, the most effective means used to control postharvest diseases are synthetic fungicides, but their uncontrolled use negatively affects human health and the environment. Recently, there has been a continuing trend to increase the use of natural antimicrobial agents. Such natural compounds can be chitin and chitosan, they are renewable, biodegradable, low toxicity and safe for consumers and the environment. The film-forming ability of chitosan and its antimicrobial, antioxidant properties are important for obtaining functional coatings for postharvest processing of fruits.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Il’ina

Research Center of Biotechnology, Russian Academy of Sciences

Email: shagdarova.bal@gmail.com

Институт биоинженерии

Ресей, 119071, Moscow

B. Shagdarova

Research Center of Biotechnology, Russian Academy of Sciences

Email: shagdarova.bal@gmail.com

Институт биоинженерии

Ресей, 119071, Moscow

A. Zubareva

Research Center of Biotechnology, Russian Academy of Sciences

Email: shagdarova.bal@gmail.com

Институт биоинженерии

Ресей, 119071, Moscow

V. Varlamov

Research Center of Biotechnology, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: shagdarova.bal@gmail.com

Институт биоинженерии

Ресей, 119071, Moscow

Әдебиет тізімі

  1. Arah I. K., Amaglo H., Kumah E. K., Ofori H. // Int. J. Agron. 2015. V. 2015. P. 1–6. https://doi.org/10.1155/2015/478041
  2. FAOSTAT, https://www.fao.org/faostat/en/#data/QCL/visualize (accessed June 19, 2023).
  3. Panno S., Davino S., Caruso A. G., Bertacca S., Crnogorac A., Mandić A., Noris E., Matić S. // Agronomy. 2021. V. 11 № 11. P. 2188. https://doi.org/10.3390/agronomy11112188
  4. Hua L., Yong C., Zhanquan Z., Boqiang L., Guozheng Q., Shiping T. // Food Qual. Saf. 2018. V. 2. № 3. P. 111–119. https://doi.org/10.1093/fqsafe/fyy016
  5. Peralta-Ruiz Y., Tovar C. D.G., Sinning-Mangonez A., Coronell E. A., Marino M. F., Chaves-Lopez C. // Polymers. 2020. V. 12. № 8. P. 1822. https://doi.org/10.3390/polym12081822
  6. Rizwana H., Bokahri N. A., Alsahli S. A., Al Showiman A. S., Alzahrani R. M., Aldehaish H. A. // Saudi J. Biol. Sci. 2021. V. 28. № 4. P. 2236–2244. https://doi.org/10.1016/J.SJBS.2021.01.014
  7. Hernández-Lauzardo A.N., Velázquez-del Valle M. G., Veranza-Castelán L., Melo-Giorgana G.E., Guerra-Sánchez M.G. // Fruits. 2010. V. 65. № 4. P. 245–253. https://doi.org/10.1051/fruits/2010020
  8. Li Z., Jennings A. // Int. J. Environ. Res. Public Health. 2017. V. 14. № 7. https://doi.org/10.3390/ijerph14070826.
  9. Bakshi P. S., Selvakumar D., Kadirvelu K., Kumar N. S. // Int. J. Biol. Macromol. 2020. V. 150. P. 1072–1083. https://doi.org/10.1016/J.IJBIOMAC.2019.10.113
  10. Maliki S., Sharma G., Kumar A., Moral-Zamorano M., Moradi O., Baselga J. et al. // Polymers. 2022. V. 14. № 7. https://doi.org/10.3390/polym14071475.
  11. Krasnow C., Ziv C. // Agronomy. 2022. V. 12. № 1. P. 216. https://doi.org/10.3390/agronomy12010216
  12. Chiu T., Poucet T., Li Y. // Synth. Syst. Biotechnol. 2022. V. 7. № 4. P. 1075–1083. https://doi.org/10.1016/J.SYNBIO.2022.06.009
  13. Naveed M., Phil L., Sohail M., Hasnat M., Baig M. M.F.A., Ihsan A. U. et al. // Int. J. Biol. Macromol. 2019. V. 129. P. 827–843. https://doi.org/10.1016/j.ijbiomac.2019.01.192
  14. Duan C., Meng X., Meng J., Khan M. I.H., Dai L., Khan A. et al. // J. Bioresour. Bioprod. 2019. V. 4. № 1. P. 11–21. https://doi.org/10.21967/JBB.V4I1.189
  15. Ngo D.-H., Kim S.-K. // Adv. Food Nutr. Res. 2014. V. 73. P. 15–31. https://doi.org/10.1016/B978-0-12-800268-1.00002-0
  16. Romanazzi G., Gabler F. M., Margosan D., Mackey B. E., Smilanick J. L. // Phytopathology. 2009. V. 99. № 9. P. 1028–1036. https://doi.org/10.1094/PHYTO 99-9-1028
  17. Ke C.-L., Deng F.-S., Chuang C.-Y., Lin C.-H. // Polymers. 2021. V. 13. № 6. P. 904. https://doi.org/10.3390/polym13060904
  18. Dutta P. K., Tripathi S., Mehrotra G. K., Dutta J. // Food Chem. 2009. V. 114. № 4. P. 1173–1182. https://doi.org/10.1016/J.FOODCHEM.2008.11.047
  19. Kumar S., Mukherjee A., Dutta J. // Trends Food Sci. Technol. 2020. V. 97. P. 196–209.0 https://doi.org/10.1016/J.TIFS.2020.01.002
  20. Priyadarshi R., Sauraj, Kumar B., Deeba F., Kulshreshtha A., Negi Y. S. // Food Hydrocoll. 2018. V. 85. P. 158–166. https://doi.org/10.1016/J.FOODHYD.2018.07.003
  21. Flórez M., Guerra-Rodríguez E., Cazón P., Vázquez M. // Food Hydrocoll. 2022. V. 124. P. 107328. https://doi.org/10.1016/J.FOODHYD.2021.107328
  22. Liu J., Tian S., Meng X., Xu Y. // Postharvest Biol. Technol. 2007. V. 44. № 3. P. 300–306. https://doi.org/10.1016/J.POSTHARVBIO.2006.12.019
  23. Fatma Kibar H., Sabir F. K., Kibar H. F., Sabir F. K. // AIMS Agric. Food. 2018. V. 3. № 2. P. 97–108. https://doi.org/10.3934/agrfood.2018.2.97
  24. Li Y., Zhou Y., Wang Z., Cai R., Yue T., Cui L. // Foods. 2021. V. 10. № 12. P. 3135. https://doi.org/10.3390/foods10123135
  25. Kaewklin P., Siripatrawan U., Suwanagul A., Lee Y. S. // Int. J. Biol. Macromol. 2018. V. 112. P. 523–529. https://doi.org/10.1016/J.IJBIOMAC.2018.01.124
  26. Zhu Y., Li D., Belwal T., Li L., Chen H., Xu T., Luo Z. // Molecules. 2019. V. 24. № 24. P. 4552. https://doi.org/10.3390/molecules24244552
  27. García M., Casariego A., Díaz R., Roblejo L. // Emirates J. Food Agric. V. 26. № 3. P. 238–246. https://doi.org/10.9755/ejfa.v26i3.16620
  28. Salama H. E., Abdel Aziz M. S., Alsehli M. // Int. J. Biol. Macromol. 2019. V. 139. P. 614–620. https://doi.org/10.1016/J.IJBIOMAC.2019.08.008
  29. Won J. S., Lee S. J., Park H. H., Bin Song K., Min S. C. // J. Food Sci. 2018. V. 83. № 1. P. 138–146. https://doi.org/10.1111/1750–3841.14002
  30. Safari Z. S., Ding P., Juju Nakasha J., Yusoff S. F. // Coatings. 2020. V. 10. № 12. P. 1222. https://doi.org/10.3390/coatings10121222
  31. Araújo J. M.S., de Siqueira A. C.P., Blank A. F., Narain N., de Aquino Santana L. C.L. // Food. Bioprocess. Technol. 2018. V. 11. 1750–1760. https://doi.org/10.1007/s11947-018-2139-9
  32. Ahmed S., Sameen D. E., Lu R., Li R., Dai J., Qin W., Liu Y. // Crit. Rev. Food Sci. Nutr. 2022. V. 62. № 11. P. 3088–3102. https://doi.org/10.1080/10408398.2020.1863327.
  33. Romanazzi G., Feliziani E., Sivakumar D. // Front. Microbiol. 2019. V. 9. P. 2745. https://doi.org/10.3389/fmicb.2018.02745.
  34. Batista Silva W., Cosme Silva G. M., Santana D. B., Salvador A. R., Medeiros D. B., Belghith I., et al. // Food Chem. 2018. V. 242. P. 232–238. https://doi.org/10.1016/j.foodchem.2017.09.052
  35. Tang Y., Hu X., Zhang X., Guo D., Zhang J., Kong F. // Carbohydr. Polym. 2016. V. 151. P. 752–759. https://doi.org/10.1016/j.carbpol.2016.06.023
  36. Deng J., Zhu E.-Q., Xu G.-F., Naik N., Murugadoss V., Ma M.-G. et al. // Green Chem. 2022. V. 24. № 2. P. 480–492. https://doi.org/10.1039/D1GC03898B
  37. Ramakrishnan R., Kulandhaivelu S. V., Roy S., Viswanathan V. P. // Ind. Crops Prod. 2023. V. 193. P. 116114. https://doi.org/10.1016/J.INDCROP.2022.116114
  38. Ngo T. M.P., Nguyen T. H., Dang T. M.Q., Tran T. X., Rachtanapun P. // Int. J. Mol. Sci. 2020. V. 21. № 6. https://doi.org/10.3390/ijms21062224.
  39. Dutta D., Sit N. // J. Food Sci. Technol. 2023. V. 60. P. 1888–1902. https://doi.org/10.1007/s13197-022-05474-5
  40. Roy S., Zhang W., Biswas D., Ramakrishnan R., Rhim J.-W. // Molecules. 2023. V. 28. № 2. P. 730. https://doi.org/10.3390/molecules28020730
  41. Shehata S. A., Abdeldaym E. A., Ali M. R., Mohamed R. M., Bob R. I., Abdelgawad K. F. // Agronomy. 2020. V. 10. № 10. P. 1466. https://doi.org/10.3390/agronomy10101466
  42. Valizadeh S., Naseri M., Babaei S., Hosseini S. M. H., Imani A. // Int. J. Biol. Macromol. 2019. V. 134. P. 604–612. https://doi.org/10.1016/j.ijbiomac.2019.05.071
  43. Xu T., Gao C., Feng X., Yang Y., Shen X., Tang X. // Int. J. Biol. Macromol. 2019. V. 134. P. 230–236. https://doi.org/10.1016/j.ijbiomac.2019.04.189

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Effect of chitosan-based coatings on the preservation and quality of tomato fruits.

Жүктеу (979KB)

© Russian Academy of Sciences, 2024