Method for Analyzing the Antimicrobial Activity of Peptides via Escherichia coli Expression System
- 作者: Grafskaia E.N.1, Kharlampieva D.D.1, Bobrovsky P.A.1,2, Serebrennikova M.Y.1,2, Lazarev V.N.1,2, Manuvera V.A.1,2
-
隶属关系:
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency
- Federal State Autonomous Educational Institution of Higher Education “Moscow Institute of Physics and Technology (National Research University)”
- 期: 卷 61, 编号 1 (2025)
- 页面: 25-34
- 栏目: Articles
- URL: https://rjonco.com/0555-1099/article/view/683309
- DOI: https://doi.org/10.31857/S0555109925010038
- EDN: https://elibrary.ru/CZLYIY
- ID: 683309
如何引用文章
详细
The test system for an assay of new potential antimicrobial peptides (AMP) based on the expression of recombinant AMP-encoding genes in Escherichia coli cells has been proposed. This method has a number of advantages over the use of chemically synthesized peptides and both approaches effectively complement each other. Our approach does not impose limitations on the AMP size, facilitates high-throughput screening of mutant plasmid libraries, and has lower cost and complexity compared to the use of synthetic peptides. The core of our methodology involves transformation of the model gram-negative bacterium E. coli with plasmids carrying a recombinant AMP-encoding gene regulated by an inducible promoter. Following transcription induction, bacteria synthesize the AMP, which ultimately leads to cell death. The assessment of bacterial growth is carried out either by measuring the optical density of a bacterial culture grown in liquid media in a microplate or by drip seeding of serial culture dilutions on an agar-based nutrient medium.
全文:

作者简介
E. Grafskaia
Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency
编辑信件的主要联系方式.
Email: grafskayacath@gmail.com
俄罗斯联邦, Moscow, 119435
D. Kharlampieva
Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency
Email: grafskayacath@gmail.com
俄罗斯联邦, Moscow, 119435
P. Bobrovsky
Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency; Federal State Autonomous Educational Institution of Higher Education “Moscow Institute of Physics and Technology (National Research University)”
Email: grafskayacath@gmail.com
俄罗斯联邦, Moscow, 119435; Dolgoprudny, 141701
M. Serebrennikova
Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency; Federal State Autonomous Educational Institution of Higher Education “Moscow Institute of Physics and Technology (National Research University)”
Email: grafskayacath@gmail.com
俄罗斯联邦, Moscow, 119435; Dolgoprudny, 141701
V. Lazarev
Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency; Federal State Autonomous Educational Institution of Higher Education “Moscow Institute of Physics and Technology (National Research University)”
Email: grafskayacath@gmail.com
俄罗斯联邦, Moscow, 119435; Dolgoprudny, 141701
V. Manuvera
Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency; Federal State Autonomous Educational Institution of Higher Education “Moscow Institute of Physics and Technology (National Research University)”
Email: grafskayacath@gmail.com
俄罗斯联邦, Moscow, 119435; Dolgoprudny, 141701
参考
- Muteeb G., Rehman M.T., Shahwan M., Aatif M. // Pharmaceuticals. 2023. V. 16. № 11. P. 1615. https://doi.org/10.3390/ph16111615
- Salam Md.A., Al-Amin Md.Y., Salam M.T., Pawar J.S., Akhter N., Rabaan A.A., Alqumber M.A.A. // Healthcare. 2023. V. 11. № 13. P. 1946. https://doi.org/10.3390/healthcare11131946
- Mba I.E., Nweze E.I. // Yale J. Biol. Med. 2022. V. 95. № 4. P. 445–463.
- Moretta A., Scieuzo C., Petrone A.M., Salvia R., Manniello M.D., Franco A. et al. // Front. Cell. Infect. Microbiol. 2021. V. 11. P. 668632. https://doi.org/10.3389/fcimb.2021.668632
- Browne K., Chakraborty S., Chen R., Willcox M.D., Black D.S., Walsh W.R., Kumar N. // IJMS. 2020. V. 21. № 19. P. 7047. https://doi.org/10.3390/ijms21197047
- Kumar P., Kizhakkedathu J., Straus S. // Biomolecules. 2018. V. 8. № 1. P. 4. https://doi.org/10.3390/biom8010004
- Huan Y., Kong Q., Mou H., Yi H. // Front. Microbiol. 2020. V. 11. P. 582779. https://doi.org/10.3389/fmicb.2020.582779
- Galzitskaya O.V. // IJMS. 2023. V. 24. № 11. P. 9451. https://doi.org/10.3390/ijms24119451
- Agüero-Chapin G., Antunes A., Marrero-Ponce Y. // Antibiotics. 2023. V. 12. № 6. P. 1011. https://doi.org/10.3390/antibiotics12061011
- Yan J., Cai J., Zhang B., Wang Y., Wong D.F., Siu S.W.I. // Antibiotics. 2022. V. 11. № 10. P. 1451. https://doi.org/10.3390/antibiotics11101451
- Bakare O.O., Gokul A., Niekerk L.-A., Aina O., Abiona A., Barker A.M., et al. // IJMS. 2023. V. 24. № 14. P. 11864. https://doi.org/10.3390/ijms241411864
- Bin Hafeez A., Jiang X., Bergen P.J., Zhu Y. // IJMS. 2021. V. 22. № 21. P. 11691. https://doi.org/10.3390/ijms222111691
- Dini I., De Biasi M.-G., Mancusi A. // Antibiotics. 2022. V. 11. № 11. P. 1483. https://doi.org/10.3390/antibiotics11111483
- Cardoso M.H., Orozco R.Q., Rezende S.B., Rodrigues G., Oshiro K.G.N., Cândido E.S., Franco O.L. // Front. Microbiol. 2020. V. 10. P. 3097. https://doi.org/10.3389/fmicb.2019.03097
- Yoshida M., Hinkley T., Tsuda S., Abul-Haija Y.M., McBurney R.T., Kulikov V. et al. // Chem. 2018. V. 4. № 3. P. 533–543. https://doi.org/10.1016/j.chempr.2018.01.005
- Aronica P.G.A., Reid L.M., Desai N., Li J., Fox S.J., Yadahalli S. et al. // J. Chem. Inf. Model. 2021. V. 61. № 7. P. 3172–3196. https://doi.org/10.1021/acs.jcim.1c00175
- Merrifield R.B., Stewart J.Morrow., Jernberg Nils. // Anal. Chem. 1966. V. 38. № 13. P. 1905–1914. https://doi.org/10.1021/ac50155a057
- Bello-Madruga R., Torrent Burgas M. // Comput. Struct. Biotechnol.J. 2024. V. 23. P. 972–981. https://doi.org/10.1016/j.csbj.2024.02.008
- Zhang H.-Q., Sun C., Xu N., Liu W. // Front. Immunol. 2024. V. 15. P. 1326033. https://doi.org/10.3389/fimmu.2024.1326033
- Steiner H., Hultmark D., Engström Å., Bennich H., Boman H.G. // Nature. 1981. V. 292. № 5820. P. 246–248. https://doi.org/10.1038/292246a0
- Casteels P., Ampe C., Jacobs F., Vaeck M., Tempst P. // The EMBO Journal. 1989. V. 8. № 8. P. 2387–2391. https://doi.org/10.1002/j.1460-2075.1989.tb08368.x
- Grafskaia E.N., Pavlova E.R., Latsis I.A., Malakhova M.V., Ivchenkov D.V., Bashkirov P.V., et al. // Materials & Design. 2022. V. 224. P. 111364. https://doi.org/10.1016/j.matdes.2022.111364
- Klock H.E., Lesley S.A. High Throughput Protein Expression and Purification. / Ed. S.A. Doyle. Totowa, NJ: Humana Press, 2009. V. 498. P. 91–103. https://doi.org/10.1007/978-1-59745-196-3_6
- Wiegand I., Hilpert K., Hancock R.E.W. // Nat. Protoc. 2008. V. 3. № 2. P. 163–175. https://doi.org/10.1038/nprot.2007.521
补充文件
