Absolute and global instability of plane submerged jets

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The family of velocity profiles of a submerged jet, which are absolutely unstable in the plane-parallel approximation, is considered. The profiles are specified by two parameters, the first of them is responsible for the location of the only inflection point in the velocity profile, and the second is responsible for the shear layer thickness. An algorithm for determining the length of the section of local absolute instability of the jet with a given input velocity profile, that is, the distance at which absolute instability gives way to convective instability, has been implemented. The dependence of this length on the parameters defining the input profile is obtained. A connection between the characteristics of local absolute instability calculated in the plane-parallel approximation and global instability of the jet evolving in space is analytically obtained. The input velocity profile that corresponds to sufficiently large length of the zone of local absolute instability, at which global instability of spatially developing jet occurs is demonstrated. Thus, the possibility of existence of global instability of plane submerged jets with special velocity distributions is demonstrated.

全文:

受限制的访问

作者简介

V. Vedeneev

Moscow State University, Institute of Mechanics

编辑信件的主要联系方式.
Email: vasily@vedeneev.ru
俄罗斯联邦, Moscow

L. Gareev

Moscow State University, Institute of Mechanics

Email: gareev@imec.msu.ru
俄罗斯联邦, Moscow

Ju. Zayko

Moscow State University, Institute of Mechanics

Email: zayko@imec.msu.ru
俄罗斯联邦, Moscow

N. Exter

Moscow State University, Institute of Mechanics

Email: exter@imec.msu.ru
俄罗斯联邦, Moscow

参考

  1. Зайко Ю.С., Решмин А.И., Тепловодский С.Х., Чичерина А.Д. Исследование затопленных струй с увеличенной длиной начального ламинарного участка // Изв. РАН. МЖГ. 2018. Т. 1. С. 97–106.
  2. Zayko J., Teplovodskii S., Chicherina A., Vedeneev V., Reshmin A. Formation of free round jets with long laminar regions at large Reynolds numbers // Phys. Fluids. 2018. V. 30. 043603.
  3. Зайко Ю.С., Гареев Л.Р., Чичерина А.Д., Трифонов В.В., Веденеев В.В., Решмин А.И. Экспериментальное обоснование применимости линейной теории устойчивости к затопленной струе // Доклады РАН. Физика, технические науки. 2021. Т. 497. С. 44–48.
  4. Gareev L.R., Zayko J.S., Chicherina A.D., Trifonov V.V., Reshmin A.I., Vedeneev V.V. Experimental validation of inviscid linear stability theory applied to an axisymmetric jet // J. Fluid Mech. 2022. V. 934. A3.
  5. Schlichting H. Boundary Layer Theory // McGraw-Hill. 1979.
  6. Иорданский С.В., Куликовский А.Г. Об абсолютной устойчивости некоторых плоскопараллельных течений при больших числах Рейнольдса // ЖЭТФ. 1965. Т. 49. Вып. 4. С. 1326–1331.
  7. Deissler R.L. The convective nature of instability in plane Poiseuille flow // Phys. Fluids. 1987. V. 30. No. 8. P. 2303–2305.
  8. Brevdo L. Convectively unstable wave packets in Blasius boundary layer // ZAMM. 1995. V. 75. No. 6. P. 423–436.
  9. Abid M., Brachet M., Huerre P. Linear hydrodynamic instability of circular jets with thin shear layers // Eur. J. Mech. B/Fluids. 1993. V. 12(5). P. 683–693.
  10. Vedeneev V.V., Zayko J.S. On absolute stability of free jets // J. Phys: Conf. Series. 2018. V. 1129. 012037.
  11. Vedeneev V., Nikitin N. Absolute instability of plane incompressible jets // J. Fluid Mech. 2023. V. 962. A4.
  12. Chomaz J.-M., Huerre P., Redekopp L.G. A frequency selection criterion in spatially developing flows // Stud. Appl. Math. 1991. V. 84. № 2. P. 119–144.
  13. Le Dizes S., Huerre P., Chomaz J.M., Monkewitz P.A. Linear global modes in spatially developing media // Philos. Trans. R. Soc. London A. 1996. V. 354. № 1705. P. 169–212.
  14. Monkewitz P.A. The absolute and convective nature of instability in two-dimensional wakes at low Reynolds numbers // Phys. Fluids. 1988. V. 31. № 5. P. 999–1006.
  15. Pier B. On the frequency selection of finite-amplitude vortex shedding in the cylinder wake // J. Fluid Mech. 2002. V. 458. P. 407–417.
  16. Coenen W., Lesshafft L., Garnaud X., Sevilla A. Global instability of low-density jets // J. Fluid Mech. 2017. V. 820. P. 187–207.
  17. Woodley B.M., Peake N. Global linear stability analysis of thin aerofoil wakes // J. Fluid Mech. 1997. V. 339. P. 239–260.
  18. Le Dizés S. Global modes in falling capillary jets // Eur. J. Mech., B/Fluids. 1997. V. 16. № 6. P. 761–778.
  19. Yakubenko P.A. Global capillary instability of an inclined jet // J. Fluid Mech. 1997. V. 346. P. 181–200.
  20. Веденеев В.В., Порошина А.Б. Устойчивость упругой трубки, содержащей текущую неньютоновскую жидкость и имеющей локально ослабленный участок // Труды МИАН. 2018. Т. 300. С. 42–64.
  21. Bondarev V., Vedeneev V. Short-wave instability of an elastic plate in supersonic flow in the presence of the boundary layer// Journal of fluid mechanics. 2016. V. 802. P. 528–552.
  22. Веденеев В.В. Математическая теория устойчивости плоскопараллельных течений и развитие турбулентности // Долгопрудный: Издательский Дом “Интеллект”, 2016. 152 с.
  23. Couairon A., Chomaz J.-M. Fully nonlinear global modes in slowly varying flows // Phys. Fluids. 1999. V. 11. № 12. P. 3688–3703.
  24. Лаврентьев М.А., Шабат Б.В. Методы теории функций комплексного переменного. М.: Наука, 1965
  25. Спасова А.А., Зайко Ю.С. Разработка алгоритма формирования затопленной струи с заданными характеристиками профиля скорости // ПМТФ. 2023. Т. 64. № 4. С. 67–75.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Velocity profiles defined by a pair of parameters ξ, ζ: ξ ≤ 0.5, ζ = 1 (a), ξ = 0.5, ζ ≥ 1 (b), ξ = 0.25, ζ ≥ 1 (c). The red circle marks the inflection point.

下载 (192KB)
3. Fig. 2. Computational domain for the symmetrical half of a flat unidirectional submerged jet.

下载 (47KB)
4. Fig. 3. Velocity profiles (a) and the corresponding level lines Im α = 0 on the plane for a jet with parameters ξ = 0.25, ζ = 2 (b). Dashed curves indicate the velocity profiles and level lines for x = 1, dotted for x = 2, dashed-dotted for x = 4, and solid for x = 6.6.

下载 (100KB)
5. Fig. 4. Level lines Im ω = 0 on the plane for cases of absolute (a) and convective (b) instability for jet velocity profiles at different distances from the origin. The black dot denotes the saddle point. The signs “±” in the gray circles show the directions of decrease and increase of Im ω in the vicinity of the saddle point. The thin line with arrows shows the integration path. The type of curves corresponds to Fig. 3.

下载 (127KB)
6. Fig. 5. Dependence of the length of the local absolute instability section on the parameters ξ, ζ. The red dots indicate the velocity profiles considered.

下载 (405KB)
7. Fig. 6. Velocity profiles for x = 0.0, 0.8, 1.8, 3.4, 5.0, 7.2 with the initial profile corresponding to ξ = 0.1, ζ = 1.6, the circles show the position of the inflection point (a). Velocity values ​​at the profile inflection point depending on the longitudinal coordinate x (b).

下载 (103KB)
8. Fig. 7. Mapping of the line Im ω = Im ωs into the plane α for the jet profile corresponding to the distance x = 0 (a), 0.8 (b), 1.8 (c), 3.4 (d), 5.0 (d), 7.2 (e) from the initial cross-section. The calculation based on the Rayleigh equation is shown in black, the approximation with the parameters of Table 1 is shown in gray, the saddle point α = αs is shown by the circle.

下载 (264KB)
9. Fig. 8. Dependence of the increment of local absolute instability Im ωs on the longitudinal coordinate x.

下载 (192KB)

版权所有 © Russian Academy of Sciences, 2024