Comparison of methods for isolation of extracellular vesicles from human serum

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Extracellular vesicles (EVs) have recently become an important object of study. It is assumed that through EVs in the body, intercellular communication is carried out, including the regulation of gene expression, the control of proliferation and differentiation, and much more. The important role of EV in pathology is also shown. An important practical application of EVs is their use as markers of various pathological conditions. At present, the understanding of the molecular mechanisms of action of EVs is very limited, not least due to the methodological difficulties of studying these objects. First of all, it should be noted that there is no standardized method for isolating EVs, and this is a problem for a deeper study of EVs. We tried to choose the most appropriate method for isolating EVs from blood serum. For this, EVs were isolated from blood serum using three methods, after which the protein composition of the isolated EVs was determined using mass spectrometry. Each of the methods used has its own advantages and disadvantages, which must be taken into account when planning experiments in the future.

Texto integral

Acesso é fechado

Sobre autores

А. Yakovlev

Scientific and Practical Psychoneurological Center named after Z.P. Solovyov DZM; Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences

Autor responsável pela correspondência
Email: al_yakovlev@ihna.ru
Rússia, Moscow; Moscow

T. Druzhkova

Scientific and Practical Psychoneurological Center named after Z.P. Solovyov DZM

Email: al_yakovlev@ihna.ru
Rússia, Moscow

N. Solovyeva

Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences

Email: al_yakovlev@ihna.ru
Rússia, Moscow

A. Guekht

Scientific and Practical Psychoneurological Center named after Z.P. Solovyov DZM

Email: al_yakovlev@ihna.ru
Rússia, Moscow

N. Gulyaeva

Scientific and Practical Psychoneurological Center named after Z.P. Solovyov DZM; Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences

Email: al_yakovlev@ihna.ru
Rússia, Moscow; Moscow

Bibliografia

  1. Thery C., Witwer K.W., Aikawa E., Alcaraz M.J., Anderson J.D., Andriantsitohaina R., Antoniou A., Arab T., Archer F., Atkin-Smith G.K., et al. // J. Extracell. Vesicles. 2018. V. 7. № 1.
  2. Belhadj Z., He B., Deng H.L., Song S.Y., Zhang H., Wang X.Q., Dai W.B., Zhang Q. // J. Extracell. Vesicles. 2020. V. 9. № 1.
  3. Khaspekov L.G., Yakovlev A.A. // Neurochem. J. 2023. V. 39. № 1. P. 1‒18.
  4. van Niel G., Carter D.R.F., Clayton A., Lambert D.W., Raposo G., Vader P. // Nat. Rev. Mol. Cell. Biol. 2022. V. 23. № 5. P. 369‒382.
  5. Brennan K., Martin K., FitzGerald S.P., O’Sullivan J., Wu Y., Blanco A., Richardson C., Mc Gee M.M. // Sci. Rep. 2020. V. 10. № 1.
  6. Dong L., Zieren R.C., Horie K., Kim C.-J., Mallick E., Jing Y., Feng M., Kuczler M.D., Green J., Amend S.R., Pienta K.J., Xue W. // J. Extracell. Vesicles. 2020. V. 10. № 2.
  7. Visan K.S., Lobb R.J., Ham S., Lima L.G., Palma C., Edna C.P.Z., Wu L.-Y., Gowda H., Datta K.K., Hartel G., Salomon C., Möller A. // J. Extracell. Vesicles. 2022. V. 11. № 9.
  8. Novikova S., Shushkova N., Farafonova T., Tikhonova O., Kamyshinsky R., Zgoda V. // Int. J. Mol. Sci. 2020. V. 21. № 18. P. 1‒29.
  9. Tyanova S., Temu T., Cox J. // Nat. Protoc. 2016. V. 11. № 12. P. 2301‒2319.
  10. Yakovlev A.A., Druzhkova T.A., Nikolaev R.V., Kuznetsova V.E., Gruzdev S.K., Guekht A.B., Gulyaeva N.V. // Neurochem. J. 2019. V. 13. № 4. P. 385‒390.
  11. Yerneni S.S., Solomon T., Smith J., Campbell P.G. // Biochim. Biophys. Acta Gen. Subj. 2022. V. 1866. № 2.
  12. Tóth E., Turiák L., Visnovitz T., Cserép C., Mázló A., Sódar B.W., Försönits A.I., Petővári G., Sebestyén A., Komlósi Z., Drahos L., Kittel Á., Nagy G., Bácsi A., Dénes Á., Gho Y.S., Szabó-Taylor K., Buzás E.I. // J. Extracell. Vesicles. 2021. V. 10. № 11.
  13. Wolf M., Poupardin R.W., Ebner-Peking P., Andrade A.C., Blöchl C., Obermayer A., Gomes F.G., Vari B., Maeding N., Eminger E., Binder H.M., Raninger A.M., Hochmann S., Brachtl G., Spittler A., Heuser T., Ofir R., Huber C.G., Aberman Z., Schallmoser K., Volk H.D., Strunk D. // J. Extracell. Vesicles. 2022. V. 11. № 4.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Рис. 1. Анализ протеома ЭВ, выделенных разными методами. Число белков, идентифицированных с помощью масс-спектрометрического анализа, представлено на диаграмме Венна.

Baixar (63KB)
3. Рис. 2. Локализация белков, выявленных во фракции ЭВ, согласно базе данных FunRich. Показаны только те компартменты, белки которых достоверно обогащаются при выделении ЭВ. Во всех представленных компартментах для всех способов выделения происходит достоверное обогащение белков с достоверностью p < 0.001 по тесту Хи-квадрат с поправкой Бонферрони на множественные сравнения.

Baixar (136KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024