COVID-19: selected clinical aspects through the prism of practical experience


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Since the first report in December 2019 of a new coronavirus infection, dubbed COVID-19, the new human coronavirus strain SARS-CoV-2 has spread worldwide, reaching pandemic proportions. Much remains to be studied, and the challenges for the near future include improvement of our understanding of the epidemiology, pathophysiology, and clinical features of this new infectious disease. There are many questions regarding the interaction of the virus and the human body. Until now, the effectiveness of any of the antiviral drugs has not been proven. This article highlights some aspects of the pathogenesis and clinical course of COVID-19, as well as the possibilities for optimizing therapy associated with these aspects. The multifaceted, sometimes excessive and uncontrollable response from the immune system determines an extremely variable spectrum of clinical manifestations of COVID-19, which ranges from asymptomatic to fatal bilateral pneumonia and multiple organ failure. «Cytokine storm» appears to be one of the most serious and potentially life-threatening events associated with the most severe clinical course of COVID-19, including the development of acute respiratory distress syndrome. Antiinflammatory therapy, including anti-interleukin-6 receptor antibodies, and timely and adequate respiratory support have no doubt proven to be effective in the treatment of these difficult patients. Chronic respiratory diseases such as bronchial asthma (BA) and chronic obstructive pulmonary disease (COPD) can dramatically affect the fate of a patient infected with SARS-CoV2. Therefore, preventive measures to prevent nfection and the continuation of basic therapy for asthma and COPD, including inhaled glucocorticosteroids, are strongly recommended to reduce the risk of exacerbation of chronic disease, on the one hand, and improve the outcomes of COVID-19, on the other.

Full Text

Restricted Access

About the authors

Yu. G Belotserkovskaya

Russian Medical Academy of Continuous Professional Education

Email: belo-yuliya@yandex.ru
Cand. Sci. (Med.), Associate Professor at the Department of Pulmonology 2/1, build. 1, Barrikadnaya str., Moscow 125993, Russian Federation

S. S Lebedev

Russian Medical Academy of Continuous Professional Education

Moscow, Russia

D. V Vakatov

S.P. Botkin City Clinical Hospital

Moscow, Russia

I. A Demina

S.P. Botkin City Clinical Hospital

Moscow, Russia

O. N Sakara

S.P. Botkin City Clinical Hospital

Moscow, Russia

A. G Romanovskikh

Russian Medical Academy of Continuous Professional Education

Moscow, Russia

I. P Smirnov

Russian Medical Academy of Continuous Professional Education

Moscow, Russia

References

  1. Liu J, Dai S, Wang M, et al. Virus like particle-based vaccines against emerging infectious disease viruses. J Virol Sin. 2016;31:279-87. Doi: W.W07/s12250-016-3756-y.
  2. Qu G, Li X, Hu L., Jiang G. An imperative need for research on the role of environmental factors in transmission of novel coronavirus (COVID-19). Environ Sci Technol. 2020;54:3730-32. doi: 10.1021/acs.est.0c01102.
  3. De Groot R.J., Baker S.C., Baric R.S, et al. Commentary: Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group. J Virol. 2013;87:7790-2. doi: 10.1128/JVI.01244-13.
  4. Weber D.J., Rutala W.A, Fischer W.A, et al. Emerging infectious diseases: focus on infection control issues for novel coronaviruses (severe acute respiratory syndrome-CoV and Middle East respiratory syndrome-CoV), hemorrhagic fever viruses (Lassa and Ebola), and highly pathogenic avian influenza viruses, A (H5N1) and A (H7N9) Am J Infect Control. 2016;44:e91-100. doi: 10.1016/j.ajic.2015.11.018.
  5. Lai C.C., Shih T.P., Ko W.C., et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges. Int J Antimicrob Agents. 2020:105924. Doi: 10.1016/j. ijantimicag.2020.105924.
  6. Lam T.T.-Y, Shum M.H.-H., Zhu H.-C, et al. Identification of 2019-nCoV related coronaviruses in Malayan pangolins in southern China. bioRxiv 2020:2020.2002.2013.945485.
  7. Li X., Zai J., Zhao Q., et al. Evolutionary history, potential intermediate animal host, and crossspecies analyses of SARS-CoV-2. J Med Virol. 2020;92(6):602-11. doi: 10.1002/jmv.25 731.
  8. Du Z., Xu X., Wu Y., et al. Serial Interval of COVID-19 among Publicly Reported Confirmed Cases. Emerg Infect Dis. 2020;26(6):1341-43. doi: 10.3201/eid2606.200357.
  9. Lu C, Liu X., Jia Z. 2019-nCoVtransmission through the ocular surface mustnot be ignored. Lancet (London, England). 2020;395(10224):e39. doi: 10.1016/S0140-6736(20)30313-5.
  10. Guan W, Ni Z., Hu Y, et al. clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708-20. Doi: 10.1056/ NEJMoa2002032.
  11. Nishiura H., Linton N.M., Akhmetzhanov A.R. Initial Cluster of Novel Coronavirus (2019-nCoV) Infections in Wuhan, China Is Consistent with Substantial Human-to-Human Transmission. J Clin Med. 2020;9(2):488. Doi: 10.3390/ jcm9020488.
  12. Sun S.H., Chen Q., Gu H.J., et al. A mouse model of SARS-CoV-2 infection and pathogenesis. Cell Host Microbe. 2020;28(1):124-33.e4. doi: 10.1016/j.chom.2020.05.020.
  13. Liu J., Zheng X., Tong Q., et al. Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV and 2019-nCoV. J Med Virol. 2020;92(5):491-94. Doi: 10.1002/ jmv.25709.
  14. Yang Y, Xiao Z., Ye K., et al. SARS-CoV-2: characteristics and current advances in research. J Virol. 2020;17(1):117. doi: 10.1186/s12985-020-01369-z.
  15. Hellewell J., Abbott S., Gimma A., et al. Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group, Funk S., Eggo R.M. Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. Lancet Glob Health. 2020;8(4):e488-96. doi: 10.1016/S2214-109X(20)30074-7.
  16. Chen T, Rui J., Wang Q., et al. A mathematical model for simulating the phase-based transmissibility of a novel coronavirus. Inf Dis Poverty. 2020;9(1):24. doi: 10.1186/s40249-020-00640-3.
  17. Huang C., Wang Y, Li X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5.
  18. Munster V.J., Koopmans M., van Doremalen N., van Riel D, de Wit E. A novel coronavirus emerging in China - key questions for impact assessment. N Engl J Med. 2020;382:692-94. Doi: 10.1056/ NEJMp2000929.
  19. Lu R., Zhao X., Li J., et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565-74. doi: 10.1016/S0140-6736(20)30251-8.
  20. Li H., Liu L., Zhang D., et al. SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet. 2020;395:151 7-20. doi: 10.1016/S0140-6736(20)30920-X.
  21. Guo Y.-R., Cao Q.-D., Hong Z.-S., et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil Med Res. 2020;7:11. doi: 10.1186/s40779-020-00240-0.
  22. Teuwen L.A., Geldhof V., Pasut A., et al. Author Correction: COVID-19: the vasculature unleashed. Nat Rev Immunol. 2020;1. doi: 10.1038/s41577-020-0356-8.
  23. Профилактика, диагностика и лечение новой коронавирусной инфекции (2019-nCoV). Временные методические рекомендации. Версия 8 (03.09.2020). Министерство здравоохранения Российской Федерации.
  24. Langer F., Kluge S., Klamroth R., et al. Coagulopathy in COVID-19 and Its Implication for Safe and Efficacious Thromboprophylaxis. Hamostaseol. 2020;40(3):264-9. Published on-line 2020 Jun 4. doi: 10.1055/a-1178-3551.
  25. Zaim S., Chong J.H., Sankaranarayanan V, Harky A. COVID-19 and Multiorgan Response. Curr Probl Cardiol. 2020;45(8):100618. Doi: 10.1016/j. cpcardiol.2020.100618.
  26. Varga Z., Flammer A.J., Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417-18. Doi: 10.1016/ S0140-6736(20)30937-5.
  27. Yang Y, Xiao Z., Ye K., et al. SARS-CoV-2: characteristics and current advances in research. J Virol. 2020;17:117. doi: 10.1186/s12985-020-01369-z.
  28. Sharma A., Tiwari S., Deb M.K., Martyc J.L. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): a global pandemic and treatment strategies. Int J Antimicrob Agents. 2020;56(2):106054. Published on-line 2020 Jun 10. doi: 10.1016/j.ijantimicag.2020.106054.
  29. Tisoncik J.R., Korth M.J., Simmons C.P, et al. Into the eye of the cytokine storm. Microbiol Mol Biol Rev. 2012;76(1):16-32. Doi: 10.1128/ MMBR.05015-11.
  30. Ferrara J.L., Abhyankar S., Gilliland D.G. Cytokine storm of graft-versus-host disease: a critical effector role for interleukin-1. Transplant. Proc. 1993;25(1 Pt. 2):1216-7.
  31. Yuen K.Y., Wong S.S. Human infection by avian influenza A H5N1. Hong Kong Med J. 2005;11(3):189-99.
  32. Channappanavar R., Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017;39(5):529-39. doi: 10.1007/s00281-017-0629-x.
  33. Wang D., Hu B., Hu C., et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020;323(11): 1061-9. doi: 10.1001/ jama.2020.1585.
  34. Coperchini F., Chiovato L., Croce L., et al. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev. 2020;53:25-32. doi: 10.1016/j.cytogfr.2020.05.003.
  35. Brocker C., Thompson D., Matsumoto A., et al. Evolutionary divergence and functions of the human interleukin (IL) gene family Hum Genomics. 2010;5(1):30-55. doi: 10.1186/1479-7364-5-1-30.
  36. Kimura A., Kishimoto T. IL-6: regulator of Treg/ Th17 balance. Eur J Immunol. 2010;40(7):1830-35. doi: 10.1002/eji.201040391.
  37. Scheller J., Rose-John S. Interleukin-6 and its receptor: from bench to bedside. Med. Microbiol Immunol. 2006;195(4):173-83. Doi: 10.1007/ s00430-006-0019-9.
  38. Hunter C.A., Jones S.A. IL-6 as a keystone cytokine in health and disease. Nat Immunol. 2015;16(5):448-57. doi: 10.1038/ni.3153.
  39. Chen L., Liu H.G., Liu W., et al. Analysis of clinical features of 29 patients with 2019 novel coronavirus pneumonia. Zhonghua Jie He He Hu Xi Za Zhi. 2020;43(0):E005. doi: 10.3760/cma.j.is sn.1001-0939.2020.0005.
  40. McGonagle D., Sharif K., O'Regan A., Bridgewood C. The role of cytokines including Interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun Rev. 2020;19(6):102537. Doi: 10.1016/j. autrev.2020.102537.
  41. Henry B.M., de Oliveira M.H.S., Benoit S., Plebani M., Lippi G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. Clin Chem Lab Med. 2020;58(7):1021. doi: 10.1515/cclm-2020-0369.
  42. Ulhaq Z.S., Soraya G.V Interleukin-6 as a potential biomarker of COVID-19 progression. Med Mal Infect. 2020;50(4):382-83. Doi: 10.1016/j. medmal.2020.04.002.
  43. DeDiego M.L., Nieto-Torres J.L., Regla-Nava J.A., et al. Inhibition of NF-KB-mediated inflammation in severe acute respiratory syndrome coronavirus-infected mice increases survival. J Virol. 2014;88(2):913-24. Doi: 10.1128/ JVI.02576-13.
  44. Zhang C, Wu Z., Li J.W., Zhao H., Wang G.Q. The cytokine release syndrome (CRS) of severe COViD-19 and Interleukin-6 receptor (IL-6R) antagonist Tocilizumab may be the key to reduce the mortality int J Antimicrob Agents. 2020;55 (5):105954. doi: 10.1016/j.ijantimicag.2020.105954.
  45. Klopfenstein T, Zayet S., Lohse A., etal. Tocilizumab therapy reduced intensive care unit admissions and/or mortality in COViD-19 patients. Mal. infect. 2020;50(5):397-400. Doi: 10.1016/j. medmal.2020.05.001.
  46. Xu X., Han M., Li T, et al. Effective treatment of severe COViD-19 patients with tocilizumab. Proc Natl Acad Sci USA. 2020;117(20):10970-75. doi: 10.1073/pnas.2005615117.
  47. Luo P, Liu Y, Qiu L., et al. Tocilizumab treatment in COViD-19: a single center experience. J Med Virol. 2020;92:814-18. doi: 10.1002/jmv.25801. doi: 10.1002/jmv.26156.
  48. Toniati P, Piva S., Cattalini M., et al. Tocilizumab for the treatment of severe COViD-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure: a single center study of 100 patients in Brescia, italy. Autoimmun Rev. 2020;19(7):102568. Doi: 10.1016/j. autrev.2020.102568.
  49. Chen G., Wu D., Guo W., et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin invest. 2020;130:2620-29. doi: 10.1172/JCi137244.
  50. Onder G, Rezza G., Brusaferro S. Case-Fatality Rate and Characteristics of Patients Dying in Relation to COViD-19 in italy. JAMA. 2020;323(18):1775-76. doi: 10.1001/jama.2020.4683.
  51. Ranieri V.M., Rubenfeld G.D., et al. ARDS Definition Task Force. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307:2526-33. doi: 10.1001/jama.2012.5669.
  52. World Health Organization. Coronavirus disease (COViD-19) Pandemic www.who.int/ emergencies/diseases/novel-coronavirus-2019.
  53. Herold S., Becker C.,Ridge K.M.,etal. influenzavirus-induced lung injury: pathogenesis and implications for treatment. Eur Respir J. 2015;45:1463- 78. doi: 10.1183/09031936.00186214.
  54. Wang J., Nikrad M.P, Travanty E.A., et al. innate immune response of human alveolar macrophages during influenza A infection. PLoS One 2012;7:e29879. doi: 10.1371/journal. pone.0029879.
  55. Camp J.V, Jonsson C.B. A Role for Neutrophils in Viral Respiratory Disease. Front immunol. 2017;8:550. doi: 10.3389/fimmu.2017.00550.
  56. Carlin L.E., Hemann E.A., Zacharias Z.R., et al. Natural Killer Cell Recruitment to the Lung During influenza A Virus infection is Dependent on CXCR3, CCR5, and Virus Exposure Dose. Front. immunol. 2018;9:781. doi: 10.3389/fimmu.2018.00781.
  57. Xu Li, Xiaochun Ma. Acute respiratory failure in COViD-19: is it "typical" ARDS? Crit. Care. 2020;24:198. Published on-line 2020 May 6. doi: 10.1186/s13054-020-02911-9.
  58. Chung M., Bernheim A., Mei X.Y, et al. CT imaging features of 2019 novel coronavirus (2019-nCoV). Radiol. 2020;295(1):202-7. Doi: 10.1148/ radiol.2020200230.
  59. Manuel A. Acosta T, Singer B.D. Pathogenesis of COViD-19-induced ARDS: implications for an aging population. Eur Respir J. 2020;2002049. doi: 10.1183/13993003.02049-2020.
  60. Rishik Vashisht, Abhijit Duggal. Respiratory failure in patients infected with SARS-CoV-2. Clev. Clin J Med. 2020. Doi: https://doi.org/10.3949/ ccjm.87a.ccc025.
  61. Alhazzani W., M0ller M.H., Arabi Y.M., et al. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with coronavirus disease 2019 (COViD-19). Crit Care Med. 2020;48(6):e440-69. Doi: 10.1097/ CCM.0000000000004363.
  62. Brower R.G., Matthay M.A., Morris A., et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301-308. Doi: 10.1056/ NEJM200005043421801.
  63. Corne J.M., Marshall C., Smith S., et al. Frequency, severity, and duration of rhinovirus infections in asthmatic and non-asthmatic individuals: a longitudinal cohort study. Lancet. 2002;359(9309):831-34.
  64. Jackson D.J., Trujillo-Torralbo M.B., del-Rosario J., et al. The influence of asthma control on the severity of virus-induced asthma exacerbations. J Allergy Clin immunol. 2015;136(2):497-500 e3. Doi: org/10.1016/j.jaci.2015.01.028.
  65. Sykes A., Edwards M.R., Macintyre J., et al. Rhinovirus 16-induced iFN-alpha and iFN-beta are deficient in bronchoalveolar lavage cells in asthmatic patients. J Allergy Clin immunol. 2012;129(6):1506-14. e6. Doi: 10.1016/j. jaci.2012.03.044.
  66. Wark P.A., Johnston S.L., Bucchieri F, et al. Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus. J Exp Med. 2005;201(6):937-47. doi: 10.1084/jem.20041901.
  67. Contoli M., Message S.D., Laza-Stanca V, et al. Role of deficient type iii interferon-lambda production in asthma exacerbations. Nat Med. 2006;12(9):1023-26. doi: 10.1038/nm1462.
  68. Chen N., Zhou M., Dong X., et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study Lancet. 2020;395:507-13. doi: 10.1016/S0140-6736(20)30211-7.
  69. Li X., Xu S., Yu M., et al. Risk factors for severity and mortality in adult COViD-19 inpatients in Wuhan. J Allergy Clin immunol. [Published on-line ahead of print April 12, 2020] https://doi.org/10.1016/j. jaci.2020.04.006
  70. Bhatraju P.K., Ghassemieh B.J., Nichols M., et al. Covid-19 in critically ill patients in the Seattle region-case series. N Engl J Med. 2020;382:2012-22. doi: 10.1056/NEJMoa2004500.
  71. Garg S. Hospitalization rates and characteristics of patients hospitalized with laboratory-confirmed coronavirus disease 2019 - COViD-NET, 14 states, March 1-30, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(15):458-64. Doi: 10.15585/ mmwr.mm6915e3.
  72. Myers L.C., Parodi S.M., Escobar G.J., Liu V.X. Characteristics of hospitalized adults with COViD-19 in an integrated health care system in California. JAMA. 2020;323:2195-98. Doi: 10.1001/ jama.2020.7202.
  73. Chhiba K.D., Patel G.B., Vu T.H.T., et al. Prevalence and characterization of asthma in hospitalized and nonhospitalized patients with COViD-19. J. Allergy Clin. immunol. 2020;146(2):307-14.e4. doi: 10.1016/j.jaci.2020.06.010.
  74. Cummings M.J., Baldwin M.R., Abrams D., et al. Epidemiology, clinical course, and outcomes of critically ill adults with COViD-19 in New York City: a prospective cohort study Lancet. 2020;395(10239):1763-70. Doi: 10.1016/ S0140-6736(20)31189-2.
  75. Global initiative for Asthma. Global strategy for asthma management and prevention. 2020. www. ginasthma.org.
  76. Yang M., Zhang Y., Chen H., et al. inhaled corticosteroids and risk of upper respiratory tract infection in patients with asthma: a meta-analysis. infection. 2019;47:377-85. Doi: 10.1007/ s15010-018-1229-y.
  77. Yang M., Chen H., Zhang Y, et al. Long-term use of inhaled corticosteroids and risk of upper respiratory tract infection in chronic obstructive pulmonary disease: a meta-analysis. inhal Toxicol 2017;29:219-26. Doi: 10.1001/ archinternmed.2008.550.
  78. Yang i.A., Clarke M.S., Sim E.H., et al. inhaled corticosteroids for stable chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2012;7:CD002991. doi: 10.1002/14651858. CD002991.pub3.
  79. Contoli M., Pauletti A., Rossi M.R., et al. Long-term effects of inhaled corticosteroids on sputum bacterial and viral loads in COPD. Eur Respir J. 2017;50:1700451. doi: 10.1183/13993003.00451-2017.
  80. Yamaya M., Nishimura H., Deng X., et ai. Inhibitory effects of giycopyrronium, formoteroi, and budesonide on coronavirus HCoV-229E replication and cytokine production by primary cuitures of human nasai and tracheai epitheiiai ceiis. Respir Investig. 2020; in press [https://doi. org/W.W16/j.resinv.2019.12.005].
  81. Matsuyama S., Kawase M., Nao N., et ai. The inhaied corticosteroid ciciesonide biocks coronavirus RNA repiication by targeting virai NSP15. bioRxiv 2020; preprint [https://doi.org/1 0.1101/2020.03.11.987016].
  82. Jeon S., Ko M., Lee J., et ai. Identification of antivirai drug candidates against SARS-CoV-2 from FDA-approved drugs. bioRxiv 2020; preprint [https:// doi.org/10.1101/2020.03.20.999730].
  83. Jackson D.J., Busse W.W., Bacharier L.B., et ai. Association of respiratory aiiergy, asthma and expression of the SARS-CoV-2 receptor, ACE2. J Aiiergy Ciin. Immunoi. 2020;146:203-6. doi: 10.1016/j.jaci.2020.04.009.
  84. Peters M.C., Sajuthi S., Deford P, et ai. COVID-19 reiated genes in sputum ceiis in asthma: Reiationship to demographic features and corticosteroids. Am J Respir Crit Care Med. 2020;202(1):83-90. doi: 10.1164/rccm.202003-0821OC.
  85. COVID-19: GINA Answers to frequentiy asked questions on asthma management March 25, 2020. https://ginasthma.org/covid-19-gina-answers-to-frequentiy-asked-questions-on-asthma-management.
  86. Restrepo M.I., Mortensen E.M., Pugh J.A., Anzueto A. COPD is associated with increased mortaiity in patients with community-acquired pneumonia. Eur Respir J. 2006;28:346-51. doi: 10.1183/09031936.06.00131905.
  87. Restrepo M.I., Sibiia O., Anzueto A. Pneumonia in patients with chronic obstructive puimonary disease. Tuberc Respir Dis. 2018;81:187-97. doi: 10.4046/trd.2018.0030.
  88. Kew K.M., Seniukovich A. Inhaied steroids and risk of pneumonia for chronic obstructive puimonary disease. Cochrane Database Syst Rev. 2014;(3):CD010115. doi: 10.1002/14651858. CD010115.pub2.
  89. Satia I., Cusack R., Greene J.M., et ai. Prevaience and contribution of respiratory viruses in the community to rates of emergency department visits and hospitaiizations with respiratory tract infections, chronic obstructive puimonary disease and asthma. PLoS One. 2020;15(2):e0228544. Pubiished on-iine 2020 Feb 6. Doi: 10.1371/ journai.pone.0228544.
  90. Liu W., Tao Z.-W., Lei W., et ai. Anaiysis of factors associated with disease outcomes in hospitaiized patnts with 2019 novei coronavirus disease. Chin Med J. 2020;133(9):1032-38. Doi: 10.1097/ CM9.0000000000000775.
  91. Wan Y, Shang J., Graham R., et ai. Receptor recognition by novei coronavirus from Wuhan: an anaiysis based on decade-iong structurai studies of SARS. [Internet] Am Soc Microbioi J, J Viroi. 2020;94(7):e00127-20. Doi: 10.1128/ JVI.00127-20.
  92. Toru U., Ayada C., Gene O., et ai. Serum ieveis of RAAS components in COPD [Internet] European Respiratory Society. Eur Respir J. 2015;46:PA3970. doi: 10.1183/13993003.congress-2015. PA3970.
  93. Zhou Y, Yang Q., Chi J., et ai. Comorbidities and the risk of severe or fatai outcomes associated with coronavirus disease 2019: A systematic review and meta-anaiysis. Int J Infect Dis. 2020 Juiy 25. Doi: https://doi.org/10.1016/j.ijid.2020. 07.029
  94. Lippi G., Henry B.M. Chronic obstructive puimonary disease is associated with severe coronavirus disease 2019 (COVID-19). Respir Med. 2020;167:105941. Doi: https://doi. org/10.1016/j.rmed.2020.105941
  95. Worid Heaith Organization. Tobacco Users May Be at an Increased Risk of #COVID19, both in Contracting the Disease and Compiications. https://www.euro.who.int/en/heaith-topics/ heaith-emergencies/coronavirus-covid-19/ technicai-guidance/resources-for-tobacco-use-controi-as-part-of-covid-19-response/ infographic-corona virus-covid-19-and-tobacco-use. Date iast accessed: 10 May 2020
  96. Kiiierby M.E., Link-Geiies R., Haight S.C., et ai. Characteristics associated with hospitaiization among patients with COVID-19 - Metropoiitan Atianta, Georgia, March-Aprii 2020. MMWR Morb Mortai Wkiy Rep. 2020;69:790-94. doi: 10.15585/mmwr.mm6925e1.
  97. Karanasos A., Aznaouridis K., Latsios G., et ai. Impact of smoking status on disease severity and mortaiity of hospitaiized patients with COVID-19 infection: a systematic review and meta-anaiysis. Nicotine Tob Res. 2020;22(9):1657-59. Doi: org/10.1093/ntr/ntaa107.
  98. Giobai Initiative for Chronic Obstructive Lung Disease (GOLD). Giobai strategy for the diagnosis, management, and prevention of chronic obstructive puimonary disease. 2020. https:// goidcopd.org/goid-covid-19-guidance

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies