Automation of Computations in Designing an Integrated Energy System Based on Its Digital Twin

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The construction of integrated energy systems (IESs) based on traditional energy systems operating separately provides higher efficiency and reliability of energy supply to consumers. However, IESs are complex structures to design. A digital twin is a tool that allows you to combine all the tools necessary for design in a single information space. Software tools that implement the digital twin of IESs require high computational flexibility, which is due to the need to simulate a variety of equipment and involve a wide range of methods and mathematical models. Automating the construction process of a computing subsystem is a highly efficient solution for overcoming the challenges mentioned above. This paper proposes a methodological approach to automating the construction of the computing subsystem of the digital twin of an IES. The proposed approach involves using modern metaprogramming tools on a software platform to perform automated construction. During construction, the Model-Driven Engineering concept is implemented and knowledge formalized in the form of ontologies is used. The digital twin, obtained as a result of the practical application of the proposed methodological approach, enables computer and mathematical modeling of an IES in virtual space, with exploration of various configurations of its construction.

Full Text

Restricted Access

About the authors

V. A. Stennikov

Melentiev Energy Systems Institute of Siberian Branch of the Russian Academy of Sciences

Email: barakhtenko@isem.irk.ru
Russian Federation, Irkutsk

E. A. Barakhtenko

Melentiev Energy Systems Institute of Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: barakhtenko@isem.irk.ru
Russian Federation, Irkutsk

D. V. Sokolov

Melentiev Energy Systems Institute of Siberian Branch of the Russian Academy of Sciences

Email: barakhtenko@isem.irk.ru
Russian Federation, Irkutsk

G. S. Mayorov

Melentiev Energy Systems Institute of Siberian Branch of the Russian Academy of Sciences

Email: barakhtenko@isem.irk.ru
Russian Federation, Irkutsk

References

  1. Grieves M. Digital twin: manufacturing excellence through virtual factory replication, white paper // Whitepaper, Florida Institute of Technology: Florida, USA, 2015. P. 1–7.
  2. Hu W., Zhang T., Deng X., Liu Z., Tan J. Digital twin: a state-of-the-art review of its enabling technologies, applications and challenges // Journal of Intelligent Manufacturing and Special Equipment, 2021. V. 2. № 1. P. 1–34.
  3. Tao F., Cheng J., Qi Q., Zhang M., Zhang H., Sui F. Digital twin-driven product design, manufacturing and service with big data // The International Journal of Advanced Manufacturing Technology, 2018. V. 94. P. 3563–3576.
  4. Adamenko D., Kunnen S., Nagarajah A. Digital twin and product lifecycle management: What is the difference? // IFIP Advances in Information and Communication Technology, 2020. V. 594. P. 150–162.
  5. Malakuti S., Schmitt J., Platenius-Mohr M., Grüner S., Gitzel R., Bihani P. A four-layer architecture pattern for constructing and managing digital twins // In Software Architecture. ECSA 2019. Lecture Notes in Computer Science, 2019. V. 11681. P. 231–246.
  6. Redelinghuys A.J.H., Kruger K., Basson A. A six-layer architecture for digital twins with aggregation // In Service Oriented, Holonic and Multi-agent Manufacturing Systems for Industry of the Future. SOHOMA 2019. Studies in Computational Intelligence, 2020. V. 853. P. 171–182.
  7. Qi Q., Tao F., Hu T., Anwer N., Liu A., Wei Y., Wang L., Nee A.Y.C. Enabling technologies and tools for digital twin // Journal of Manufacturing Systems, 2021. V. 58. P. 3–21.
  8. Fonseca Í.A., Gaspar H.M., Mello de P.C., Sasaki H.A.U. A Standards-Based Digital Twin of an Experiment with a Scale Model Ship // Computer-Aided Design, 2022. V. 145. 103191.
  9. Sharma A., Kosasih E., Zhang J., Brintrup A., Calinescu A. Digital Twins: State of the art theory and practice, challenges, and open research questions // Journal of Industrial Information Integration, 2022. V. 30. 100383.
  10. Воропай Н.И., Массель Л.В., Колосок И.Н., Массель А.Г. ИТ-инфраструктура для построения интеллектуальных систем управления развитием и функционированием систем энергетики на основе цифровых двойников и цифровых образов // Известия Российской академии наук. Энергетика, 2021. № 1. С. 3–13.
  11. Tao F., Zhang H., Liu A., Nee A.Y.C. Digital Twin in Industry: State-of-the-Art // IEEE Transactions on Industrial Informatics, 2019. V. 15. № 4. P. 2405–2415.
  12. Kasper L., Birkelbach F., Schwarzmayr P., Steindl G., Ramsauer D., Hofmann R. Toward a Practical Digital Twin Platform Tailored to the Requirements of Industrial Energy Systems // Applied Sciences, 2022. V. 12. № 14. 6981.
  13. Li H., Zhang T., Huang Y. Digital Twin Technology for Integrated Energy System and Its Application // In Proceedings of the 1st International Conference on Digital Twins and Parallel Intelligence), Beijing, China, 15 July–15 August 2021; IEEE: New York, NY, USA, 2021. P. 422–425.
  14. Chen Y., Chen Q., Gao J., Li Z., Chen X. Hardware-in-loop based Digital Twin Technology for Integrated Energy System: A Case Study of Guangyang Island in Chongqing // In Proceedings of the 5th International Electrical and Energy Conference, Nangjing, China, 27–29 May 2022; IEEE: New York, NY, USA, 2022. P. 4956–4962.
  15. Bai H., Yuan Z., Tang X., Liu J., Yang W., Pan S., Xue Y., Liu W. Automatic Modeling and Optimization for The Digital twin of a Regional Multi-energy System // In Proceedings of the Power System and Green Energy Conference, Shanghai, China, 25–27 August 2022; IEEE: New York, NY, USA, 2022. P. 214–219.
  16. Huang W., Zhang Y., Zeng W. Development and application of digital twin technology for integrated regional energy systems in smart cities // Sustainable Computing: Informatics and Systems, 2022. V. 36. 100781.
  17. Xing J., Sun S., Yu P., Li Y., Cheng Y., Wang Y., Li S., Zhu J. Multi-energy Simulation and Optimal Scheduling Strategy Based on Digital Twin // 2022 Power System and Green Energy Conference (PSGEC), Shanghai, China, 2022. P. 96–100.
  18. Sharif Ullah A.M.M. Modeling and simulation of complex manufacturing phenomena using sensor signals from the perspective of Industry 4.0 // Advanced Engineering Informatics, 2019. V. 39. P. 1–13.
  19. Kannan K., Arunachalam N. A Digital Twin for Grinding Wheel: An Information Sharing Platform for Sustainable Grinding Process // Journal Manufacturing Science Engineering, 2019. V. 141. № 2. 021015.
  20. Moreno A., Velez G., Ardanza A., Barandiaran I., de Infante Á.R., Chopitea R. Virtualisation process of a sheet metal punching machine within the Industry 4.0 vision // International Journal on Interactive Design and Manufacturing, 2017. V. 11. P. 365–373.
  21. Singh S., Shehab E., Higgins N., Fowler K., Reynolds D., Erkoyuncu J.A., Gadd P. Data management for developing digital twin ontology model // Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2020. V. 235. № 14. P. 2323–2337.
  22. Steindl G., Stagl M., Kasper L., Kastner W., Hofmann R. Generic Digital Twin Architecture for Industrial Energy Systems // Applied Sciences, 2020. V. 10. № 24. 8903.
  23. Steinmetz C., Rettberg A., Ribeiro F.G.C., Schroeder G., Pereira C.E. Internet of Things Ontology for Digital Twin in Cyber Physical Systems // In Proceedings of the VIII Brazilian Symposium on Computing Systems Engineering, Salvador, Brazil, 5–8 November 2018; IEEE: New York, NY, USA, 2018. P. 154–159.
  24. Массель Л.В., Ворожцова Т.Н. Онтологический подход к построению цифровых двойников объектов и систем энергетики // Онтология проектирования, 2020. Т. 10. №3 (37). С. 327–337.
  25. GE, PREDIX [Электронный ресурс]. URL: https://www.ge.com/digital/applications/digital-twin (дата обращения: 05.09.2023).
  26. Azure Digital Twins [Электронный ресурс]. URL: https://docs.microsoft.com/en-us/azure/digital-twins/ (дата обращения: 05.09.2023).
  27. Paladin DesignBase [Электронный ресурс]. URL: https://www.easypower.com/products/paladin-designbase (дата обращения: 05.09.2023).
  28. Dani A.A.H., Supangkat S.H., Lubis F.F., Nugraha I.G.B.B., Kinanda R., Rizkia I. Development of a Smart City Platform Based on Digital Twin Technology for Monitoring and Supporting Decision-Making // Sustainability, 2023. V. 15. 14002.
  29. Booch G., Rumbaugh J., Jacobson I. The Unified Modeling Language User Guide, 2nd. ed. / Addison Wesley, Boston, 2005. P. 475.
  30. Booch G. Object-Oriented Analysis and Design with Applications, 3rd. ed. / Addison Wesley, Boston, 2007. P. 720.
  31. Silva da A.R. Model-driven engineering: A survey supported by the unified conceptual model // Computer Languages, Systems & Structures, 2015. V. 43. P. 139–155.
  32. Brambilla M., Cabot J., Wimmer M. Model-driven software engineering in practice. In Synthesis Lectures on Software Engineering; Morgan & Claypool: Kentfield, CA, USA, 2012. P. 191.
  33. Seixas J., Ribeiro A., Rodrigues da Silva A. A Model-Driven Approach for Developing Responsive Web Apps // Proceedings of the 14th International Conference ENASE 2019. SciTePress, Setubal, 2019. P. 257–264.
  34. Akdur D., Garousi V., Demirörs O. A survey on modeling and model-driven engineering practices in the embedded software industry // Journal of Systems Architecture, 2018. V. 91. P. 62–82.
  35. Stennikov V.A., Barakhtenko E.A., Sokolov D.V. Development of Information and Technology Platform for Optimal Design of Heating Systems // In Proceedings of the 7th Scientific Conference on Information Technologies for Intelligent Decision Making Support. 28–29 May 2019, Ufa, Russia; Atlantis Press: Paris, France, 2019.
  36. Boussaïd I., Siarry P., Ahmed-Nacer M. A survey on search-based model-driven engineering // Automated Software Engineering, 2017. V. 24. P. 233–294.
  37. Al-Azzoni I., Blank J., Petrović N. A Model-Driven Approach for Solving the Software Component Allocation Problem // Algorithms, 2021. V. 14. 354.
  38. Araújo Silva E., Valentin E., Carvalho J.R.H., Silva Barreto R. A survey of Model Driven Engineering in robotics // Journal of Computer Languages, 2021. V. 62. 101021.
  39. Stennikov V., Barakhtenko E., Sokolov D., Mayorov G. Principles of Building Digital Twins to Design Integrated Energy Systems // Computation, 2022. V. 10. 222.
  40. Hazzard K., Bock J. Metaprogramming in NET / Manning Publications: Shelter Island, NY, USA, 2013. P. 360.
  41. Lämmel R. Software Languages: Syntax, Semantics, and Metaprogramming / Springer: Cham, Switzerland, 2018.
  42. Stennikov V.A., Barakhtenko E.A., Sokolov D.V. A Methodological Approach to the Software Development for Heating System Design // In Proceedings of the International Multi-Conference on Industrial Engineering and Modern Technologies, Vladivostok, Russia, 3–4 October 2018; IEEE: New York, NY, USA, 2018.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Illustration of the principle of building a software system.

Download (13KB)
3. Fig. 2. Architecture of the software platform.

Download (65KB)
4. Figure 3. An illustration of the integration of methods and models.

Download (46KB)
5. Fig. 4. The content of the methodology for the automated construction of the digital twin computing subsystem.

Download (48KB)
6. Fig. 5. The general scheme of construction of the computing subsystem of the digital twin.

Download (71KB)
7. Fig. 6. The scheme of the power plant of the Irkutsk region.

Download (91KB)

Copyright (c) 2024 Российская академия наук