Methodological provisions to the formation and the ensuring of efficiency and reliability of district-distributed heating systems

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This study proposes a methodology for solving two problems of optimal development of district heating systems: analysis of efficiency areas and reliability of heat supply. In solving both problems, we adopt a nodal approach, which allows us to get detailed results that are most suitable to the real-world conditions. Based on the proposed methods and models, we develop an algorithm for transforming existing district heating systems into district-distributed heating systems with prosumers implemented into the network to serve the loads that fall outside the range of efficient operation of a district heating system. Wherein, the distributed sector is formed based on a prosumer that has its own generation, covering part of its own heat load and providing an additional functional and time redundancy for the system. As a result, conclusions and directions for further research are formulated.

Full Text

Restricted Access

About the authors

V. A. Stennikov

Melentiev Energy Systems Institute SB RAS

Author for correspondence.
Email: sva@isem.irk.ru
Russian Federation, Irkutsk

I. V. Postnikov

Melentiev Energy Systems Institute SB RAS

Email: postnikov@isem.irk.ru
Russian Federation, Irkutsk

E. E. Mednikova

Melentiev Energy Systems Institute SB RAS

Email: isem348@mail.ru
Russian Federation, Irkutsk

References

  1. Сеннова Е.В., Сидлер В.Г. Математическое моделирование и оптимизация развивающихся теплоснабжающих систем. Новосибирск: Наука, 1987.
  2. Lund H., Østergaard P., Chang M., et al. The status of 4th generation district heating: Research and results. Energy, 2018, Vol. 164, pp. 147–159.
  3. Revesz A., Jones P., Dunham C., et al. Developing novel 5th generation district energy networks. Energy, 2020, Vol. 201, 117389.
  4. Kallert A., Egelkamp R., Bader U., et al. A multivalent supply concept: 4th Generation District Heating in Moosburg an der Isar. Energy Reports, 2021, Vol. 7(4), pp. 110–118.
  5. Pakere I., Gravelsins A., Lauka D., et al. Linking energy efficiency policies toward 4th generation district heating system. Energy, 2021, Vol. 234, 121245.
  6. Brange L., Englund J., Lauenburg P. Prosumers in district heating networks – A Swedish case study. Applied Energy, 2016, Vol. 164, pp. 492–500.
  7. Zinsmeister D., Licklederer T., Christange F., et al. A comparison of prosumer system configurations in district heating networks. Energy Reports, 2021, Vol. 7(4), pp. 430–439.
  8. Gross M., Karbasi B., Reiners T., et al. Implementing prosumers into heating networks. Energy, 2021, Vol. 230, 120844.
  9. Pipiciello M., Caldera M., Cozzini M., et al. Experimental characterization of a prototype of bidirectional substation for district heating with thermal prosumers. Energy, 2021, Vol. 223, 120036.
  10. Федеральный закон от 27.07.2010 №190-ФЗ (ред. от 29.12.2014) “О теплоснабжении”.
  11. Якимов Л.К. Предельный радиус действия теплофикации. Тепло и сила, 1931, № 9, С. 8–10.
  12. Семенов В.Г., Разоренов Р.Н. Экспресс-анализ зависимости эффективности транспорта тепла от удалённости потребителей. Новости теплоснабжения, 2006, № 6, С. 36–38.
  13. Папушкин В.Н. Радиус теплоснабжения. Хорошо забытое старое. Новости теплоснабжения, 2010, № 9, С. 44–49.
  14. Чичирова Н.Д., Ахметова И.Г. Оценка эффективного радиуса систем централизованного теплоснабжения города Казани. Труды Академэнерго, 2016, № 1, С. 89–95.
  15. Папушкин В.Н., Полянцев С.О., Щербаков А.П., Храпков А.А. Методика расчета радиуса эффективного теплоснабжения для схем теплоснабжения. Электронный ресурс “РосТепло.ру”. URL: https://www.rosteplo.ru/Npb_files/npb_shablon.php?id=1601 (дата обращения 21.07.2022).
  16. Меренков А.П., Хасилев В.Я. Теория гидравлических цепей. Москва: Наука, 1985.
  17. Penkovskii A., Stennikov V., Mednikova E., Postnikov I. Search for a market equilibrium of Cournot-Nash in the competitive heat market. Energy, 2018, Vol. 161, pp. 193–201.
  18. Приказ Минэнерго России № 565, Минрегиона России № 667 от 29.12.2012 “Об утверждении методических рекомендаций по разработке схем теплоснабжения”.
  19. Медникова Е.Е., Стенников В.А., Постников И.В. Разработка методики оценки эффективности присоединения новых потребителей к теплоснабжающей системе. Промышленная энергетика, 2018, № 2, С. 13–20.
  20. Стенников В.А., Медникова Е.Е., Постников И.В. и др. Разработка методики расчета радиуса эффективного теплоснабжения. Промышленная энергетика, 2017, № 11, С. 25–32.
  21. Stennikov V., Iakimetc E. Optimal planning of heat supply systems in urban areas. Energy, 2016, Vol. 110, pp. 157–165.
  22. Stennikov V., Mednikova E., Postnikov I., Penkovskii A. Optimization of the effective heat supply radius for the district heating systems. Environmental and Climate Technologies, 2019, Vol. 23(2), pp. 207–221.
  23. Сеннова Е.В., Смирнов А.В., Ионин А.А. и др. Надежность систем теплоснабжения. Новосибирск: Наука, 2000.
  24. Postnikov I., Stennikov V. Modifications of probabilistic models of states evolution for reliability analysis of district heating systems. Energy Reports, 2020, Vol. 6, pp. 293–298.
  25. СНиП 41-02-2003 “Тепловые сети'. М.: Министерство регионального развития Российской Федерации, 2012.
  26. Стенников В.А., Постников И.В. Комплексный анализ надежности теплоснабжения потребителей. Известия РАН. Энергетика, 2011, № 2, С. 107–121.
  27. Stennikov V.A., Postnikov I.V. Methods for the integrated reliability analysis of heat supply. Power Technology and Engineering, 2014, Vol. 47(6), pp. 446–453.
  28. Stennikov V.A., Postnikov I.V. Methodological support for a comprehensive analysis of fuel and heat supply reliability. In: “Sustaining power resources through energy optimization and engineering”) by ed. Vasant P. and Voropai N.I. Hershey PA: Engineering Science Reference (an imprint of IGI Global), 2016.
  29. Postnikov I. Application of the Methods for Comprehensive Reliability Analysis of District Heating Systems. Environmental and Climate Technologies, 2020, Vol. 24(3), pp. 145–162.
  30. Postnikov I., Stennikov V., Mednikova E., Penkovskii A. Methodology for optimization of component reliability of heat supply systems. Applied Energy, 2018, Vol. 227, pp. 365–374.
  31. Postnikov I., Stennikov V., Penkovskii A. Prosumer in the district heating systems: Operating and reliability modeling. Energy Procedia, 2018, Vol. 10, pp. 2530–2535.
  32. Penkovskii A., Stennikov V., Kravets A. Bi-level modeling of district heating systems with prosumers. Energy Reports, 2020, Vol. 6(2), pp. 89–95.
  33. Стенников В.А., Постников И.В., Пеньковский А.В. Методы и модели оптимального управления теплоснабжающими системами с активными потребителями тепловой энергии. Известия Российской академии наук: Энергетика, 2021, № 3, С. 12–23.
  34. Стенников В.А., Пеньковский А.В., Кравец А.А. Двухуровневое моделирование теплоснабжающих систем с учетом активных потребителей. Промышленная энергетика, 2021, № 6, С. 10–19.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Illustration of methods for determining the efficiency limits of heat supply in the TSS based on the RET criterion: (a) integral approach - a single radius is determined for each IT based on the assumption of uniform distribution of the heat load; (b) the proposed nodal approach - solutions are obtained for the nodes of each main line from the system sources.

Download (136KB)
3. Fig. 2. Methodology for determining the RET in the TSS.

Download (255KB)
4. Fig. 3. Main components of the comprehensive reliability analysis of the TSS.

Download (334KB)
5. Fig. 4. Algorithm for solving the studied problems of developing centralized-distributed TSS: Block A - determining the efficiency limits of centralized heat supply of the original scheme based on the RET criterion; Block B - reliability analysis within the efficiency limits with a transition to the reliability synthesis (ensuring) block, if necessary; Block C - determining the efficiency limits of the distributed heat supply sector, formed from the nodes of the original scheme located outside the RET boundaries; Block D - analysis and ensuring the reliability of the distributed heat supply sector based on the prosumer.

Download (439KB)
6. Fig. 5. Stages of formation of centralized-distributed heat supply systems with defining criteria of economic efficiency (radius of efficient heat supply) and reliability of heat supply (nodal reliability indicators).

Download (412KB)

Copyright (c) 2024 Российская академия наук