Numerical simulation оf coal combustion in the combustion chamber of a boiler unit

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents the results of numerical investigation of physico-chemical processes in the furnace chamber of a steam boiler during flaring of polyfractional solid fuel. Given the presence of two-phase flow, the application of the QUICK quadratic upward interpolation scheme and the monotonicized counterflow MLU scheme for discretization of the spatial and temporal step of the convection-diffusion equation is considered. The simulation results in general reveal a good convergence of the numerical simulation results with in situ measurements when using the considered approximation schemes. At the same time, it is shown that, when using the QUICK scheme, deviations are observed in regions with large gradients, leading to the propagation of the calculation inaccuracy to subsequent domains. In both versions of the simulation, zones contributing to high-temperature corrosion were identified.

Full Text

Restricted Access

About the authors

A. V. Gil

National Research Tomsk Polytechnic University

Author for correspondence.
Email: andgil@tpu.ru
Russian Federation, Tomsk

K. I. Maltsev

National Research Tomsk Polytechnic University

Email: andgil@tpu.ru
Russian Federation, Tomsk

N. V. Abramov

National Research Tomsk Polytechnic University

Email: andgil@tpu.ru
Russian Federation, Tomsk

S. A. Puzyrev

National Research Tomsk Polytechnic University

Email: andgil@tpu.ru
Russian Federation, Tomsk

References

  1. Jones D. The Global Electricity Review 2021 // Ember. https://ember-climate.org/app/uploads/2021/03/Global-Electricity-Review-2021.pdf (дата обращения: 24.04.2024).
  2. Pourkashanian M., Ma L., Porter R., Edge P., Black S., Clement A., Ingham D.B. Challenges and opportunities in simulation of coal and biomass combustion in power plants // THMT-15. Proceedings of the Eighth International Symposium on Turbulence Heat and Mass Transfer. 2015. pp. 45–71.
  3. Ding X., Li W., Liu P., Kang Zh. Numerical calculation on combustion process and NO transformation behavior in a coal-fired boiler blended ammonia: Effects of the injection position and blending ratio // International Journal of Hydrogen Energy. 2023. Vol. 48. No. 76. pp. 29771–29785.
  4. Баутин С.П., Обухов А.Г. Численное моделирование сложных течений газа в концентрированных огненных вихрях // Вестник Тюменского государственного университета. Физико-математическое моделирование. Нефть, газ, энергетика. 2019. Том 5. № 3. С. 47–68.
  5. Đugum A., Hanjalić K. Numerical simulation of coal-air mixture flow in a real double-swirl burner and implications on combustion anomalies in a utility boiler // Energy. 2019. Vol. 170. pp. 942–953.
  6. Гиль А.В., Заворин А.С., Красильников С.В., Обухов С.В., Старченко А.В. Исследование аэродинамики и горения в топке котла БКЗ-420-140 применительно к вариантам замещения проектного топлива // Известия Томского политехнического университета. 2007. Т. 310. № 1. С. 175–181.
  7. Neumann L.E., Šimůnek J., Cook F.J. Implementation of quadratic upstream interpolation schemes for solute transport into HYDRUS-1D // Environmental Modelling & Software. 2011. Vol. 26. No. 11. pp. 1298–1308.
  8. Nishikawa H., White J.A. An efficient quadratic interpolation scheme for a third-order cell-centered finite-volume method on tetrahedral grids // Journal of Computational Physics. 2023. Vol. 490. Article 112324.
  9. Forester C.K. Higher order monotonic convective difference schemes // Journal of Computational Physics. 1977. Vol. 23. No. 1. pp. 1–22.
  10. Šimůnek J. Models of water flow and solute transport in the unsaturated zone // Encyclopedia of Hydrological Sciences / M. G. Anderson, J. J. McDonnell (eds.). John Wiley & Sons. 2006.
  11. Тайлашева Т.С., Гиль А.В., Воронцова Е.С. Оценка условий сжигания высоковлажного непроектного топлива в камерной топке на основе численного моделирования // Известия Томского политехнического университета. Инжиниринг георесурсов. 2016. Том 327. № 1. С. 128–135.
  12. Каган Г.М. Тепловой расчет котлов (нормативный метод). 3-е изд., перераб. и доп. СПб.: Изд-во НПО ЦКТИ, 1998. 256 с.
  13. Гиль А.В., Старченко А.В., Заворин А.С. Применение численного моделирования топочных процессов для практики перевода котлов на непроектное топливо: монография. Томск: STT, 2011. 183 с.
  14. Ярин Л.П., Сухов Г.С. Основы теории горения двухфазных сред. СПб.: Энергоатомиздат, 1987. 312 с.
  15. Fischer K., Leithner R., Müller H. Three-dimensional simulation of the gas-solid flow in coal-dust fired furnaces // Two-Phase Flow Modelling and Experimentation: Proceedings of the First International Symposium / G. P. Celata, R. K. Shah (eds.). Pisa: ETS. 1995. Vol. 1. pp. 1387–1393.
  16. Бубенчиков А.М., Старченко А.В. Численные модели динамики и горения аэродисперсных смесей в каналах. Томск: Изд-во Томского гос. ун-та, 1998. 236 с.
  17. Виленский Т.В., Хзмалян Д.М. Динамика горения пылевидного топлива. М.: Энергия, 1978. 248 с.
  18. Leonard B.P. A stable and accurate convective modelling procedure based on quadratic upstream interpolation // Computer Methods in Applied Mechanics and Engineering. 1979. Vol. 19. No. 1. pp. 59–98.
  19. Noll B. Evaluation of a bounded high-resolution scheme for combustor flow computations // AIAA Journal. 1992. Vol. 30. No. 1. pp. 64–69.
  20. Sheu T.W.H., Fang C.C., Tsai S.F., Huang Ch.-Yu. On an adaptive monotonic convection – diffusion flux discretization scheme // Computer Methods in Applied Mechanics and Engineering. 1999. Vol. 173. No. 1–2. pp. 201–215.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Sketch of the combustion chamber: 1 – burner devices.

Download (86KB)
3. Fig. 2. Vector field of velocities in the longitudinal section along the combustion chamber axis (m/s): (a) MLU; (b) QUICK.

Download (232KB)
4. Fig. 3. Vector field of velocities in the cross-section along the combustion chamber axis (m/s): (a) MLU; (b) QUICK.

Download (269KB)
5. Fig. 4. Temperature distribution in the vertical section along the longitudinal axis of the combustion chamber (K): (a) MLU; (b) QUICK.

Download (123KB)
6. Fig. 5. Temperature distribution in the horizontal section along the axis of the upper tier of burners (K): (a) MLU; (b) QUICK.

Download (171KB)
7. Fig. 6. O2 concentration in the vertical section along the longitudinal axis of the combustion chamber (%): (a) MLU; (b) QUICK.

Download (137KB)
8. Fig. 7. O2 concentration in horizontal section along the axis of the upper tier of burner devices (%): (a) MLU; (b) QUICK.

Download (171KB)
9. Fig. 8. CO2 concentration in horizontal section along the axis of the upper tier of burner devices: (a) MLU; (b) QUICK.

Download (161KB)
10. Fig. 9. Temperature distribution along the height of the furnace, °C.

Download (99KB)

Copyright (c) 2024 Российская академия наук