Oxygen Storage Capacity of Y0.8Ca0.2BaCo4 – xMxO7 + δ (M = Fe, Ga, Al; 0 < x < 1) Solid Solutions during Thermal Cycling in Air

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We have studied the behavior of Y1 – yCayBaCo4 – xMxO7 + δ solid solutions in cyclic oxygen absorption/release processes in air at temperatures in the range 350–580°C. Y0.8Ca0.2BaCoO7 + δ has been found to absorb the largest amount of oxygen: 0.52 wt % (325 μmol O/g). The incorporation of calcium and iron into the structure of the YBaCo4O7 + δ cobaltite has been shown to shift the oxygen exchange process to higher temperatures and increase the oxygen storage capacity of the material.

About the authors

D. I. Turkin

Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences

Email: turkin@ihim.uran.ru
620108, Yekaterinburg, Russia

K. S. Tolstov

Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences

Email: turkin@ihim.uran.ru
620108, Yekaterinburg, Russia

M. V. Yurchenko

Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences

Email: turkin@ihim.uran.ru
620108, Yekaterinburg, Russia

A. Yu. Suntsov

Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences

Email: turkin@ihim.uran.ru
620108, Yekaterinburg, Russia

V. L. Kozhevnikov

Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: turkin@ihim.uran.ru
620108, Yekaterinburg, Russia

References

  1. Vieten J., Bulfin B., Call F., Lange M., Schmücker M., Francke A., Roeb M., Sattler C. Perovskite Oxides for Application in Thermochemical Air Separation and Oxygen Storage // J. Mater. Chem. A. 2016. V. 4. № 35. P. 13652–13659. https://doi.org/10.1039/C6TA04867F
  2. Tescari S., Agrafiotis C., Breuer S., Oliveira, Neises-von Puttkamer M., Roeb M., Sattler C. Thermochemical Solar Energy Storage Via Redox Oxides: Materials and Reactor/Heat Exchanger Concepts // Energy Procedia. 2014. V. 49. P. 1034–1043. https://doi.org/10.1016/j.egypro.2014.03.111
  3. Kodama T., Gokon N. Thermochemical Cycles for High-Temperature Solar Hydrogen Production // Chem. Rev. 2007. V. 107. № 10. P. 4048–4077. https://doi.org/10.1021/cr050188a
  4. Гилев А.Р., Киселев Е.А., Черепанов В.А. Влияние содержания кобальта на физико-химические свойства твердых растворов La1.5Sr0.5Ni1 – yCoyO4 + δ // Журн. физ. химии. 2020. Т. 94. № 12. С. 1828–1835. https://doi.org/10.31857/S0044453720120110
  5. Головачев И.Б., Трушников А.А., Волкова Н.Е., Аксенова Т.В., Черепанов В.А. Кристаллическая структура и кислородная нестехиометрия твердых растворов Ba0.9Ln0.1Fe1 – yCoyO3 – δ (Ln = Nd, Sm, Eu) // Журн. неорган. химии. 2022. Т. 67. № 6. С. 686–692. https://doi.org/10.31857/S0044457X22060095
  6. Федорова О.М., Ведмидь Л.Б., Димитров В.М. Влияние давления кислорода на термодинамическую стабильность Nd0.85Ba0.15MnO3 // Неорган. материалы. 2019. Т. 55. № 10. С. 1087–1091. https://doi.org/10.1134/S0002337X19100038
  7. Колотыгин В.А., Вискуп А.П., Пивак Е.В., Хартон Н.В. Смешанная ионно-электронная проводимость перовскитоподобных твердых растворов Ba1 – xSrx-Fe1 – yTiyO3 – δ и BaTi0.5Fe0.5 – zCezO3 – δ // Электрохимия. 2020. Т. 56. № 2. С. 119–126. https://doi.org/10.31857/S0424857020020061
  8. Karppinen M., Yamauchi H., Otani S., Fujita T., Motohashi T., Huang Y.-H., Valkeappa M., Fjellvag H. Oxygen Nonstoichiometry in YBaCo4O7 + δ: Large Low-Temperature Oxygen Absorption/Desorption Capability // Chem. Mater. 2006. V. 18. № 2. P. 490–494. https://doi.org/10.1021/cm0523081
  9. Hao H., Cui J., Chen C., Pan L., Hu J., Hu X. Oxygen Adsorption Properties of YBaCo4O7-Type Compounds // Solid State Ionics. 2006. V. 177. № 7–8. P. 631–637. https://doi.org/10.1016/j.ssi.2006.01.030
  10. Chen T., Hasegawa T., Asakura Y., Kakihana M., Motohashi T., Yin S. Improvement of the Oxygen Storage/Release Speed of YBaCo4O7 + δ Synthesized by a Glycine-Complex Decomposition Method // ACS Appl. Mater. Interfaces. 2021. V. 13. № 43. P. 51008–51017. https://doi.org/10.1021/acsami.1c15419
  11. Nagai Y., Yamamoto T., Tanaka T., Youhida S., Nonaka T., Okamoto T., Suda A., Suqiura M. X-ray Absorption Fine Structure Analysis of Local Structure of CeO2–ZrO2 Mixed Oxides with the Same Composition Ratio (Ce/Zr = 1) // Catal. Today. 2002. V. 74. № 3–4. P. 225–234. https://doi.org/10.1016/S0920-5861(02)00025-1
  12. Kaspar J., Fornasiero P. Nanostructured Materials for Advanced Automotive De-pollution Catalysts // J. Solid State Chem. 2003. V. 171. № 1–2. P. 19–29. https://doi.org/10.1016/S0022-4596(02)00141-X
  13. Räsänen S., Yamauchi H., Karppinen M. Oxygen Absorption Capability of YBaCo4O7 + δ // Chem. Lett. 2008. V. 37. № 6. P. 638–639. https://doi.org/10.1246/cl.2008.638
  14. Wang S., Hao H., Zhu B., Jia J., Hu X. Modifying the Oxygen Adsorption Properties of YBaCo4O7 by Ca, Al, and Fe Doping // J. Mater. Sci. 2006. V. 43. № 15. P. 5385–5389. https://doi.org/10.1007/s10853-008-2806-8
  15. Zhang K., Zhu Z., Ran R., Shao Z., Jin W., Liu S. Layered Perovskite Y1−xCaxBaCo4O7+δ as Ceramic Membranes for Oxygen Separation // J. Alloys Compd. 2010. V. 492. № 1–2. P. 552–558. https://doi.org/10.1016/j.jallcom.2009.11.173
  16. Parkkima O., Yamauchi H., Karppinen M. Oxygen Storage Capacity and Phase Stability of Variously Substituted YBaCo4O7 + δ // Chem. Mater. 2013. V. 25. № 4. P. 599–604. https://doi.org/10.1021/cm3038729
  17. Hao H., He Q., Cheng Y., Zhao L. Oxygen Adsorption and Electronic Transport Properties of Fe-Substituted YBaCo4O7 Compounds // Mater. Res. Bull. 2014. V. 53. P. 84–88. https://doi.org/10.1016/j.materresbull.2014.01.042
  18. Motohashi T., Kadota S., Fjellvag H., Karppinen M., Yamauchi H. Uncommon Oxygen Intake/Release Capability of Layered Cobalt Oxides, REBaCo4O7 + δ: Novel Oxygen-Storage Materials // Mater. Sci. Eng. B. 2008. V. 148. № 1–3. P. 196–198. https://doi.org/10.1016/j.mseb.2007.09.052
  19. Räsänen S., Parkkima O., Rautama E.-L., Yamauchi H., Karppinen M. Ga-for-Co Substitution in YBaCo4O7 + δ: Effect on High-Temperature Stability and Oxygen-Storage Capacity // Solid State Ionics. 2012. V. 208. P. 31–35. https://doi.org/10.1016/j.ssi.2011.11.028
  20. Räsänen S., Motohashi T., Yamauchi H., Karppinen M. Stability and Oxygen-Storage Characteristics of Al-Substituted YBaCo4O7 + δ // J. Solid State Chem. 2010. V. 183. № 3. P. 692–695. https://doi.org/10.1016/j.jssc.2010.01.010
  21. Turkin D.I., Yurchenko M.V., Tolstov K.S., Shalamova A.M., Suntsov A.Yu., Kozhevnikov V.L. Oxygen Exchange and Phase Stability of Y0.8Ca0.2BaCo4–xMxO7+δ (M = Fe, Ga, Al) // J. Solid State Chem. 2023. V. 326. P. 124194. https://doi.org/10.1016/j.jssc.2023.124194
  22. Avci S., Chmaissem O., Zheng H., Hug A., Manuel P., Mitchell J.F. Oxygen Stoichiometry in the Geometrically Frustrated Kagomé System YBaCo4O7+δ: Impact on Phase Behavior and Magnetism // Chem. Mater. 2013. V. 25. № 21. P. 4188–4196. https://doi.org/10.1021/cm401710b
  23. Lai K.-L., Manthiram A. Phase Stability, Oxygen-Storage Capability, and Electrocatalytic Activity in Solid Oxide Fuel Cells of (Y,In,Ca)BaCo4–yGayO7+δ // Chem. Mater. 2016. V. 28. № 24. P. 9077–9087. https://doi.org/10.1021/acs.chemmater.6b04122
  24. Rodríguez-Carvajal J. Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction // Physica B. 1993. V. 192. № 1–2. P. 55–59. https://doi.org/10.1016/0921-4526(93)90108-I
  25. Valldor M., Andersson M. The Structure of the New Compound YBaCo4O7 with a Magnetic Feature // Solid State Sci. 2002. V. 4. № 7. P. 923–931. https://doi.org/10.1016/S1293-2558(02)01342-0
  26. Caignaert V., Pralong V., Hardy V., Ritter C., Raveau B. Magnetic Structure of CaBaCo4O7: Lifting of Geometrical Frustration towards Ferrimagnetism // Phys. Rev. B: Condens. Matter. 2010. V. 81. № 9. P. 094417. https://doi.org/10.1103/PhysRevB.81.094417

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (268KB)
3.

Download (69KB)
4.

Download (564KB)
5.

Download (509KB)
6.

Download (101KB)
7.

Download (250KB)

Copyright (c) 2023 Д.И. Туркин, К.С. Толстов, М.В. Юрченко, А.Ю. Сунцов, В.Л. Кожевников