Phase Composition and Physicomechanical Properties of β-Sialons Prepared Using NaF as a Sintering Aid

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We have studied the effect of sodium fluoride as a sintering aid for β-sialons on the phase composition and physicomechanical properties of Si5AlON7 and Si4Al2O2N6. Two-step high-temperature firing of the β-sialons in the presence of NaF under a nitrogen atmosphere has been shown to cause no significant changes in the phase composition of the materials. The density and microhardness of the materials prepared using 0.5 and 5.0 wt % NaF are lower than those of the materials prepared without sintering aids, but the bending strength is higher by up to 14.3% in the case of Si5AlON7 prepared using 0.5 wt % NaF and by 4.9% in the case of Si4Al2O2N6 prepared using 5.0 wt % NaF.

About the authors

N. S. Akmadullina

Baikov Institute of Metallurgy, Russian Academy of Sciences

Email: mukudori@mail.ru
117334, Moscow, Russia

V. P. Sirotinkin

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: nakhmadullina@mail.ru
119334, Moscow, Russia

K. A. Kim

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: frolovamarianna@bk.ru
119334, Moscow, Russia

A. S. Lysenkov

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: frolovamarianna@bk.ru
119334, Moscow, Russia

M. G. Frolova

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: frolovamarianna@bk.ru
119334, Moscow, Russia

S. V. Fedorov

Baykov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: pdergacheva@imet.ac.ru
Moscow, Russia

N. A. Ovsyannikov

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: nakhmadullina@mail.ru
119334, Moscow, Russia

S. N. Ivicheva

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: nakhmadullina@mail.ru
119334, Moscow, Russia

Yu. F. Kargin

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 119991, Moscow, Russia

Author for correspondence.
Email: ldenisova@sfu-kras.ru
Россия, 119991, Москва, Ленинский пр., 49

References

  1. Kargin Yu.F., Akhmadullina N.S., Solntsev K.A. Ceramic Materials and Phosphors Based on Silicon Nitride and Sialon // Inorg. Mater. 2014. V. 50. № 13. P. 1325–1342. https://doi.org/10.1134/S0020168514130032
  2. Ахмадуллина Н.С., Шишилов О.Н., Каргин Ю.Ф. Эффекты сенсибилизации в нитридных материалах, легированных ионами редкоземельных металлов // Изв. АН. Сер. хим. 2020. Т. 69. № 5. С. 825–837. https://doi.org/10.1007/s11172-020-2841-4
  3. Yan D.-S. Enhancing Materials Design Capability through Understanding Multicomponent Phase Relationships // Pure Appl. Chem. 1998. V. 70. № 2. P. 509–515.
  4. Kurama S., Hermann M., Mandal H. The Effect of Processing Conditions, amount of Additives and Composition on the Microstructures and Mechanical Properties of α-SiAlON Ceramics // J. Eur. Ceram. Soc. 2002. V. 22. № 1. P. 109–119.
  5. Thompson D.P. Cooking up Tougher Ceramics // Nature. 2002. V. 417. P. 237.
  6. Jack K.H. Sialons and Related Nitrogen Ceramics // J. Mater. Sci. 1976. V. 11. № 6. P. 1135–1158.
  7. Gauckler L.J., Lukas H.L., Petzow G. Contribution to the Phase Diagram Si3N4--AlN–Al2O3–SiO2 // J. Am. Ceram. Soc. 1975. V. 58. № 7–8. P. 346–347.
  8. Hampshire S. SiAlONs and the Representation of Phase Relationships in Encyclopedia of Materials: Technical Ceramics and Glasses. V. 2. Amsterdam: Elsevier, 2021. P. 119–127.
  9. Jack K.H., Wilson W.I. Ceramics Based on the Si–Al–O–N and Related Systems // Nat. Phys. Sci. 1972. V. 238. P. 28–29.
  10. Cao G.Z., Metselaar R. α-Sialon Ceramics: a Review // Chem. Mater. 1991. V. 3. P. 242–252.
  11. Wang H., Chen J., Liu Y.G., Huang Z.H., Fang M.H. In-Situ Synthesis of (O'+β)-Sialon/Mullite Composite Materials from Coal Gangue // Interceram – Int. Ceram. Rev. 2015. V. 64. P. 112–115.
  12. Anya C.C., Hendry A. Hardness, Indentation Fracture Toughness and Compositional Formula of X-Phase Sialon // J. Mater. Sci. 1994. V. 29. P. 527–533.
  13. Thompson D.P., Korgul P. Sialon X-Phase // Progr. Nitrogen Ceram. 1983. V. 321. P. 375–380.
  14. Ekström T., Nygren M. SiAION Ceramics // J. Am. Ceram. Soc. 1992. V. 75. P. 259–276.
  15. Biswas M., Bandyopadhyay S., Sarkar S. Sintering Behavior & Microstructure of SPS Processed Pure 15R-SiAlON Polytype // J. Alloys Compd. 2018. V. 768. P. 130–135.
  16. Qin H., Li Y., Long M., Nie X., Jiang P., Xue W. In situ Synthesis Mechanism of 15R–SiAlON Reinforced Al2O3 Refractories by Fe–Si Liquid Phase Sintering // J. Am. Ceram. Soc. 2018. V. 101. P. 1870–1879.
  17. Jack K.H. The Fabrication of Dense Nitrogen Ceramics // Mater. Sci. Res. 1978. V. 11. P. 561–578.
  18. Oyama Y., Kamigaito O. Solid Solubility of Some Oxides in Si3N4 // Jpn. J. Appl. Phys. 1971. V. 10. P. 1637.
  19. Ekström T., Käll P.O., Nygren M., Olsson P.O. Dense Single-Phase β-Sialon Ceramics by Glass-Encapsulated Hot Isostatic Pressing // J. Mater. Sci. 1989. V. 24. № 5. P. 1853–1861.
  20. Hampshire S. Silicon Nitride Ceramics // Mater. Sci. Forum. 2009. V. 606. P. 2741.
  21. Sorrell C.C. Silicon-Nitride and Related Nitrogen Ceramics. 1. Phase-Equilibria and Properties of Reaction Bonded and Hot-Pressed M–Si–O–N systems // J. Aust. Ceram. Soc. 1982. V. 18. P. 22–34.
  22. Ziegler G., Heinrich J., Wötting G. Relationships between Processing, Microstructure and Properties of Dense and Reaction-Bonded Silicon Nitride // J. Mater. Sci. 1987. V. 22. № 9. P. 3041–3086.
  23. White G.V. New Synthesis Routes for SiAlON and SiAlON Ceramics // Key Eng. Mater. 2002. V. 206–213. P. 51.
  24. Junming X., Qian L., Linhua G. Effect of LiF on Densification and Mechanical Properties of Dy-α-Sialon Ceramics // J. Rare Earths. 2006. V. 24. № 1. Suppl. 1. P. 225–227.
  25. Akhmadullina N.S., Lysenkov A.S., Konovalov A.A., Kim K.A., Kargin Y.F., Obraztsova E.A. Synthesis and Phases Relationships of Si6-zAlzOzN8-z in a Wide Range of z // Ceram. Int. 2022. V. 48. № 9. P. 13348–13355.
  26. Ивичева С.Н., Овсянников Н.А., Лысенков А.С., Каргин Ю.Ф. Превращения в гелях на основе алкоксидов кремния и алюминия при синтезе сиалонов по данным ИК-спектроскопии // Журн. неорган. химии. 2022. Т. 67. № 12. С. 1695–1706. https://doi.org/10.31857/S0044457X2260089X
  27. Akhmadullina N.S., Sirotinkin V.P., Ovsyannikov N.A., Lysenkov A.S., Kargin Yu.F. High-Temperature Interactions of Silicon-Aluminum Oxynitrides (Sialons) with Sodium Fluoride // Inorganics. 2022. V. 10. № 9. P. 140.
  28. Лысенков А.С., Титов Д.Д., Ким К.А., Мельников М.Д., Фролова М.Г., Петракова Н.В., Ивичева С.Н., Каргин Ю.Ф., Гридин Д.В. Свойства 21R-сиалоновой керамики с добавкой оксида самария, полученной горячим прессованием // Журн. неорган. химии. 2021. Т. 66. № 8. С. 1092–1098. https://doi.org/10.31857/S0044457X21080146
  29. Ивичева С.Н., Климашин А.А., Овсянников Н.А., Лысенков А.С., Каргин Ю.Ф. Условия азотирования смешанных ксерогелей из алкоксидов кремния и алюминия // Журн. неорган. химии. 2021. Т. 66. № 8. С. 1077–1085. https://doi.org/10.31857/S0044457X21080092
  30. Ивичева С.Н., Овсянников Н.А., Лысенков А.С., Климашин А.А., Каргин Ю.Ф. Синтез оксонитридоалюмосиликатов (SIALON) золь–гель-методом // Журн. неорган. химии. 2020. Т. 65. № 12. С. 1614–1625. https://doi.org/10.31857/S0044457X20120053
  31. Ovsyannikov N.A., Kargin Y.F., Lysenkov A.S., Alad’ev N.A., Ivicheva S.N., Solntsev K.A. Preparation of Silicon Nitride and Oxonitride by Gas-Phase Pyrolysis of Hexamethyldisilazane // Inorg. Mater.: Appl. Res. 2020. V. 11. № 2. P. 488–494.
  32. Ivicheva S.N., Klimashin A.A., Ovsyannikov N.A., Lysenkov A.S., Kargin Y.F. Formation of Si3Al3O3N5 Oxonitride from Mixtures of Xerogels and Silicon and Aluminum Nitrides in the Nitrogen Atmosphere // IOP Conf. Ser.: Mater. Sci. Eng. 2020. V. 848. № 1. P. 012112.
  33. Ivicheva S.N., Lysenkov A.S., Ovsyannikov N.A., Kargin Yu.F. Zol–Gel Synthesis of SiAlON Materials Dopped by Rare-Earth Elements // IOP Conf. Ser.: Mater. Sci. Eng. 2019. V. 525. P. 012084.
  34. Слесарев А.И., Ивичева С.Н., Лысенков А.С., Каргин Ю.Ф., Солнцев К.А., Ищенко А.В., Ягодин В.В., Шульгин Б.В. Термостимулированная экзоэлектронная эмиссия сиалона Si3Al3O3N5, активированного европием // Проблемы спектроскопии и спектрометрии. Екатеринбург: Уральский федеральный университет им. первого Президента России Б.Н. Ельцина, 2018. Вып. 39. С. 55–63.
  35. Ishenko A.V., Babailova G.F., Yagodin V.V., Ivicheva S.N., Lysenkov A.S., Akhmadullina N.S., Kargin Yu.F., Shulgin B.V. Luminescent Properties of Eu2+ in AlON, SiAlON, Ca-SiAlON Oxynitrides // AIP Conf. Proc. 2018. P. 020031.
  36. Ягодин В.В., Ищенко А.В., Ивичева С.Н., Лысенков А.С., Овсянников Н.А., Каргин Ю.Ф., Бабайлова Г.Ф. Импульсная катодолюминесценция сиалонов, активированных ионами Ce3+ // Проблемы спектроскопии и спектрометрии. Екатеринбург: Уральский федеральный университет им. первого Президента России Б.Н. Ельцина, 2018. Вып. 40. С. 87–92.
  37. Goldstein A., Krell A. Transparent Ceramics at 50: Progress Made and Further Prospects // J. Am. Ceram. Soc. 2016. V. 99. № 10. P. 3173–3197.
  38. Qian L., Junming X., Wei H. Ceramic Materials and Components for Energy and Environmental Applications. N.Y.: Wiley, 2010.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (635KB)
3.

Download (2MB)
4.

Download (1MB)

Copyright (c) 2023 Н.С. Ахмадуллина, В.П. Сиротинкин, К.А. Ким, А.С. Лысенков, М.Г. Фролова, С.В. Федоров, Н.А. Овсянников, С.Н. Ивичева, Ю.Ф. Каргин