Preparation of Ultrafine-Grained WC–ZrO2 Ceramics by Spark Plasma Sintering

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

WC–(1, 3, 5)% ZrO2 ceramics have been produced by spark plasma sintering (SPS). WC–ZrO2 powder mixtures have been prepared by ultrasonic homogenization and stirring of WC nanopowder and submicron t-ZrO2 powder. The WC–ZrO2 sintering rate has been shown to be limited by the grain-boundary diffusion process. Increasing the percentage of ZrO2 leads to a slight increase in optimal SPS temperature, an increase in the concentration of W2C particles, and a decrease in hardness.

About the authors

E. A. Lantsev

Lobachevsky State University of Nizhny Novgorod

Email: nokhrin@nifti.unn.ru
Russia, 603022, Nizhny Novgorod

A. V Terent’ev

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: elancev@nifti.unn.ru
119334, Moscow, Russia

V. N. Chuvil’deev

Lobachevsky State University of Nizhny Novgorod

Email: semenycheva@nifti.unn.ru
Russia, 603022, Nizhny Novgorod

A. A. Murashov

Lobachevsky State University

Email: golovkina_lyudmila@mail.ru
603022, Nizhny Novgorod, Russia

N. V. Isaeva

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: elancev@nifti.unn.ru
119334, Moscow, Russia

Yu. V. Blagoveshchenskii

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: elancev@nifti.unn.ru
119334, Moscow, Russia

K. E. Smetanina

Lobachevsky State University

Email: andreev@phys.unn.ru
603022, Nizhny Novgorod, Russia

M. S. Boldin

Lobachevsky State University of Nizhny Novgorod

Email: nokhrin@nifti.unn.ru
Russia, 603022, Nizhny Novgorod

A. V. Nokhrin

Lobachevsky State University of Nizhny Novgorod

Email: nokhrin@nifti.unn.ru
Russia, 603022, Nizhny Novgorod

N. Yu. Tabachkova

MISiS National University of Science and Technology; Prokhorov General Physics Institute of the Russian Academy of Sciences

Author for correspondence.
Email: nokhrin@nifti.unn.ru
Russia, 119049, Moscow; Russia, 119991, Moscow

References

  1. Курлов А.С., Гусев А.И. Физика и химия карбидов вольфрама. М.: Физматлит, 2013. 272 с.
  2. Sun J., Zhao J., Huang Z., Yan K., Shen X., Xing J., Gao Y., Jian Y., Yang H., Li B. A Review on Binderless Tungsten Carbide: Development and Application // Nano-Micro Lett. 2020. V. 12. № 1. P. 13.https://doi.org/10.1007/s40820-019-0346-1
  3. Шевченко В.Я., Баринов С.М. Техническая керамика. М.: Наука, 1993. 192 с.
  4. Basu B., Lee J.-H., Kim D.-Y. Development of WC–ZrO2 Nanocomposites by Spark Plasma Sintering // J. Am. Ceram. Soc. 2004. V. 87. № 2. P. 317–319.https://doi.org/10.1111/j.1551-2916.2004.00317.x
  5. Venkateswaran T., Sarkar D., Basu B. WC–ZrO2 Composites: Processing and Unlubricated Tribological Properties // Wear. 2006. V. 260. P. 1–9.https://doi.org/10.1016/j.wear.2004.11.005
  6. Tokita M. Progress of Spark Plasma Sintering (SPS) Method, Systems, Ceramics Applications and Industrialization // Ceramics. 2021. V. 4. № 2. P. 160–198.https://doi.org/10.3390/ceramics4020014
  7. Чувильдеев В.Н., Благовещенский Ю.В., Сахаров Н.В., Болдин М.С., Нохрин А.В., Исаева Н.В., Шотин С.В., Лопатин Ю.Г., Смирнова Е.С. Получение и исследование ультрамелкозернистого карбида вольфрама с высокой твердостью и трещиностойкостью // ДАН. 2015. Т. 463. № 3. С. 281–285.
  8. Ланцев Е.А., Малехонова Н.В., Цветков Ю.В., Благовещенский Ю.В., Чувильдеев В.Н., Нохрин А.В., Болдин М.С., Андреев П.В., Сметанина К.Е., Исаева Н.В. Исследование особенностей высокоскоростного спекания плазмохимических нанопорошков карбида вольфрама с повышенным содержанием кислорода // ФХОМ. 2020. № 6. С. 23–39.
  9. Исаева Н.В., Благовещенский Ю.В., Благовещенская Н.В., Мельник Ю.И., Самохин А.В., Алексеев Н.В., Асташов А.Г. Получение нанопорошков карбидов и твердосплавных смесей с применением низкотемпературной плазмы // Изв. вузов. Порошковая металлургия и функциональные покрытия. 2013. № 3. С. 7–14.
  10. Чувильдеев В.Н., Болдин М.С., Дятлова Я.Г., Румянцев В.И., Орданьян С.С. Сравнительное исследование горячего прессования и высокоскоростного электроимпульсного плазменного спекания порошков Al2O3/ZrO2/Ti(C,N) // Журн. неорган. химии. 2015. Т. 60. № 8. С. 1088–1094.
  11. Курлов А.С., Гусев А.И. Вакуумный отжиг нанокристаллических порошков WC // Неорган. материалы. 2012. Т. 48. № 7. С. 781–791.
  12. Красовский П.В., Благовещенский Ю.В., Григорович К.В. Определение содержания кислорода в нанопорошках системы WC–Co // Неорган. материалы. 2008. Т. 44. № 9. С. 1074–1079.
  13. Nanda A.K., Watabe M., Kurokawa K. The Sintering Kinetics of Ultrafine Tungsten Carbide Powders // Ceram. Int. 2011. V. 37. № 7. P. 2643–2654.https://doi.org/10.1016/j.ceramint.2011.04.011
  14. Buhsmer C.P., Crayton P.H. Carbon Self-Diffusion in Tungsten Carbide // J. Mater. Sci. 1971. V. 6. № 7. P. 981–988.https://doi.org/10.1007/BF00549949
  15. Болдин М.С., Попов А.А., Мурашов А.А., Сахаров Н.В., Шотин С.В., Нохрин А.В., Чувильдеев В.Н., Сметанина К.Е., Табачкова Н.Ю. Высокоскоростное электроимпульсное плазменное спекание мелкозернистых керамик Al2O3–SiC. Исследование микроструктуры и механических свойств // ЖТФ. 2022. Т. 92. № 10. С. 1571–1581.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (3MB)
3.

Download (546KB)
4.

Download (177KB)
5.

Download (4MB)
6.

Download (167KB)

Copyright (c) 2023 Е.А. Ланцев, А.В. Нохрин, М.С. Болдин, К.Е. Сметанина, Ю.В. Благовещенский, Н.В. Исаева, А.А. Мурашов, В.Н. Чувильдеев, А.В. Терентьев, Н.Ю. Табачкова