On oscillations of a quadrotor-slung pendulum with a cavity partially filled with liquid
- Authors: Holub A.P.1, Lokshin B.Y.1, Selyutskiy Y.D.1
-
Affiliations:
- Lomonosov Moscow State University
- Issue: No 2 (2025)
- Pages: 166-176
- Section: РОБОТОТЕХНИКА
- URL: https://rjonco.com/0002-3388/article/view/684540
- DOI: https://doi.org/10.31857/S0002338825020117
- EDN: https://elibrary.ru/ASUBJR
- ID: 684540
Cite item
Abstract
Dynamics of a pendulum suspended to a quadrotor and having a spherical cavity partially filled with the ideal liquid is considered. It is supposed that the system moves in the vertical plane. The drag force acting on the pendulum is taken into account. In order to simulate oscillations of the liquid inside the cavity, a phenomenological “pendulum” model is used. An algorithm for constructing the quadrotor acceleration control is proposed that ensures the transition of the system to the steady horizontal flight with the specified speed along with damping of oscillations of both the pendulum and the liquid inside it (including in the presence of a constant wind).
Keywords
Full Text

About the authors
A. P. Holub
Lomonosov Moscow State University
Email: seliutski@imec.msu.ru
Institute of Mechanics
Russian Federation, MoscowB. Ya. Lokshin
Lomonosov Moscow State University
Email: seliutski@imec.msu.ru
Institute of Mechanics
Russian Federation, MoscowYu. D. Selyutskiy
Lomonosov Moscow State University
Author for correspondence.
Email: seliutski@imec.msu.ru
Institute of Mechanics
Russian Federation, MoscowReferences
- Omar H.M., Akram R., Mukras S.M.S., Mahvouz A.A. Recent Advances and Challenges in Controlling Quadrotors with Suspended Loads // Alexandria Engineering J. 2022. V. 63. P. 253-270. https://doi.org/10.1016/j.aej.2022.08.001
- Estevez J., Garate G., Lopez-Guede J.M., Larrea M. Review of Aerial Transportation of Suspended-Cable Payloads with Quadrotors // Drones. 2024. V. 8. № 2. P. 35. https://doi.org/10.3390/drones8020035
- Xian B., Wang S., Yang S. An Online Trajectory Planning Approach for a Quadrotor UAV with a Slung Payload // IEEE Trans. Ind. Electron. 2019. V. 67. P. 6669–6678. https://doi.org/10.1109/TIE.2019.2938493
- De Angelis E.L., Giulietti F., Pipeleers G. Two-Time-Scale Control of a Multirotor Aircraft for Suspended Load Transportation // Aerosp. Sci. Technol. 2019. V. 84. P. 193–203. https://doi.org/10.1016/j.ast.2018.10.012
- Sun L., Wang K., Mishamandani A.H.A., Zhao G., Huang H., Zhao X., Zhang B. A Novel Tension-Based Controller Design for the Quadrotor-Load System // Control Eng. Pract. 2021. V. 112. P. 104818.
- Baraean A., Hamanah W.M., Bawazir A., Quama M.M., El-Ferik S., Baraean S., Abido A.M. Optimal Nonlinear Backstepping Controller Design of a Quadrotor-Slung Load System Using Particle Swarm Optimization // Alexandria Engineering J. 2023. V. 68. P. 551–560. https://doi.org/10.1016/j.aej.2023.01.050
- Kong L., Reis J., He W., Yu X., Silvestre C. On Dynamic Performance Control for a Quadrotor-Slung-Load System with Unknown Load Mass // Automatica. 2024. V. 162. P. 111516. https://doi.org/10.1016/j.automatica.2024.111516
- Goodarzi F.A., Lee D., Lee T. Geometric Control of a Quadrotor UAV Transporting a Payload Connected via Flexible Cable // Int. J. Control. Autom. Syst. 2015. V. 13. P. 1486–1498. https://doi.org/10.1007/s12555-014-0304-0
- Chang P., Yang S., Tong J., Zhang F. A New Adaptive Control Design for a Quadrotor System with Suspended Load by an Elastic Rope // Nonlinear Dyn. 2023. V. 111. P. 19073–19092.
- Kaya U.C., Subbarao K. Momentum Preserving Simulation of Cooperative Multirotors with Flexible-Cable Suspended Payload // J. Dyn. Syst. Meas. Control. 2022. V. 144. P. 041007. https://doi.org/10.1115/1.4053343
- Wu P.X., Yang C.C., Cheng T.H. Cooperative Transportation of UAVs Without Inter-UAV Communication // IEEE/ASME Trans. Mechatron. 2023. V. 28. P. 2340–2351. https://doi.org/10.1109/TMECH.2023.3234511
- Bisgaard M., Bendtsen J.D., La Cour-Harbo A. Modeling of Generic Slung Load System // J. Guid. Control. Dyn. 2009. V. 32. № 2. P. 433–449. https://doi.org/10.2514/1.36539
- Куликов В.Е., Чукаева А.Н. Система управления квадрокоптером при транспортировке груза на внешней подвеске // Тр. Московск. ин-та электромеханики и автоматики. 2016. Т. 14. С. 2–16.
- Sun L., Wang K., Mishamandani A.H.A., Zhao G., Huang H., Zhao X., Zhang B. A Novel Tension-Based Controller Design for the Quadrotor–Load System // Control Eng. Pract. 2021. V. 112. P. 104818.
- Голуб А.П., Зудов В.Б., Локшин Б.Я., Селюцкий Ю.Д. О робастной стабилизации движения квадрокоптера с подвешенным грузом // Мехатроника, автоматизация, управление. 2024. Т. 25. № 9. С. 490–500. https://doi.org/10.17587/mau.25.490-500
- Охоцимский Д.Е. К теории движения тел с полостями, частично заполненными жидкостью // ПММ. 1956. Т. 20. Вып. 1. С. 3–20.
- Abramson H.N., Chu W.H., Ransleben G.E. Representation of Fuel Sloshing in Cylindrical Tanks by an Equivalent Mechanical Model // ARS Journal. 1961. V. 31. № 12. P. 1697–1705.
- Колесников К.С. Колебания жидкости в цилиндрическом сосуде. М.: Изд-во МВТУ им. Н.Э. Баумана, 1964. 97 с.
- Stofan A.J., Armstead A.L. Analytical and Experimental Investigation of Forces and Frequencies Resulting from Liquid Sloshing in a Spherical Tank. Washington: NASA. 1962. Technical Note D-1281.
- Abramson H.N., Chu W.H., Garza L.R. Liquid Sloshing in Spherical Tanks // AIAA Journal. 1963. V. 1. № 2. P. 384–389. https://doi.org/10.2514/3.1542
- Chu W.H. Fuel Sloshing in a Spherical Tank Filled to an Arbitrary Depth // AIAA Journal. 1964. V. 2. № 11. P. 1972–1979. https://doi.org/10.2514/3.2713
- Aliabadi S., Johnson A., Abedi J. Comparison of Finite Element and Pendulum Models for Simulation of Sloshing // Computers & Fluids. 2003. V. 32. № 4. P. 535–545. https://doi.org/10.1016/S0045-7930(02)00006-3
- Godderidge B., Turnock S.R., Tan M. A Rapid Method for the Simulation of Sloshing Using a Mathematical Model Based on the Pendulum Equation // Computers & Fluids. 2012. V. 57. P. 163–171. https://doi.org/10.1016/j.compfluid.2011.12.018
- Moriello L., Biagiotti L., Melchiorri C., Paoli A. Manipulating Liquids with Robots: A Sloshing-Free Solution // Control Engineering Practice. 2018. V. 78. P. 129–141. https://doi.org/10.1016/j.conengprac.2018.06.018
- Sayyaadi H., Soltani A. Modeling and Control for Cooperative Transport of a Slung Fluid Container Using Quadrotors // Chinese J. of Aeronautics. 2018. V. 31. № 2. P. 262–272. https://doi.org/10.1016/j.cja.2017.12.005
- Колесников К.С. Динамика ракет. М.: Машиностроение. 1980. 376 с.
- Ibrahim R.A. Liquid Sloshing Dynamics. Theory and Applications. Cambridge, 2005. 972 p.
- Квакернаак Х., Сиван Р. Линейные оптимальные системы управления. М.: Мир, 1977. 650 с.
Supplementary files
