ASIMPTOTIChESKOE POVEDENIE ANIZOTROPIYNOGO REGULYaTORA V FORME DINAMIChESKOY OBRATNOY SVYaZI PO VYKhODU PRI MALYKh ZNAChENIYaKh SREDNEY ANIZOTROPII VNEShNIKh VOZMUShchENIY1

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Получено асимптотическое представление оптимального анизотропийного регулятора для линейных дискретных стационарных систем и анизотропийной нормы системы, замкнутой подобным регулятором. Определен максимальный порог средней анизотропии внешнего возмущения, при котором с заданной точностью оптимальный анизотропийный регулятор аппроксимируется 2-оптимальным регулятором.

About the authors

I. R Belov

Институт проблем управления им. В.А. Трапезникова РАН

Email: ivbelov93@ipu.ru
Москва

A. Yu Kustov

Институт проблем управления им. В.А. Трапезникова РАН

Email: arkadiykustov@yandex.ru
Москва

References

  1. Kwakernaak H., Sivan R. Linear optimal control systems. New York, Wiley, 1972.
  2. Trentelman H.L., Stoorvogel A.A. Sampled-data and discrete-time 2-optimal control // Proc. 32nd IEEE Conf. Decision and Control. 1993. V. 1. P. 331–336.
  3. Saberi A., Sannuti P., Stoorvogel A.A. 2-optimal controllers with measurement feedback for discrete-time systems: flexibility in closed-loop pole placement // Proc. 35th IEEE Conf. Decision and Control. 1996. V. 2. P. 2330–2335.
  4. Dragan V., Toader M., Stoica A.-M. 2-optimal control for linear stochastic systems // Automatica. 2004. V. 40(7). P. 1103–1113.
  5. Doyle J.C., Glover K., Khargonekar P.P., Francis B.A. State-space solutions to standard 2- and ∞-control problems // IEEE Trans. AC. 1989. V. 34. P. 831–847.
  6. Green M., Limebeer D.J.N. Linear robust control. Englewood Cliffs. N.J: Prentice Hall, 1995.
  7. Iglesias P.A., Glover K. State-space approach to discrete-time ∞-control // Int. J. Control. 1991. V. 54. P. 1031–1073.
  8. Yaesh I., Shaked U. A transfer function approach to the problems of discrete-time systems: ∞-optimal linear control and filtering // IEEE Trans. Autom. Control. 1991. V. 36. P. 1264–1271.
  9. Semyonov A.V., Vladimirov I.G., Kurdyukov A.P. Stochastic approach to ∞-optimization // Proc. 33rd Conf. Decision and Control. 1994. V. 3. P. 2249–2250.
  10. Vladimirov I.G., Kurdyukov A.P., Semyonov A.V. On computing the anisotropic norm of linear discrete-time-invariant systems // Proc. 13 IFAC World Congress. 1996. P. 179–184.
  11. Diamond P., Vladimirov I.G., Kurdyukov A.P., Semyonov A.V. Anisotropy-based performance analysis of linear discrete time invariant control systems // Int. J. Control. 2001. V. 74. No. 1. P. 28–42.
  12. Timin V.N., Kurdyukov A.P. Synthesis of a robust control system for airplane landing under wind shear conditions // J. Comput. Syst. Sci. Int. 1995. V. 33. P. 146–154.
  13. Tchaikovsky M.M. Static Output Feedback Anisotropic Controller Design by LMI-Based Approach: General and Special Cases // American Control Conference. 2012. P. 5208–5213.
  14. Vladimirov I.G., Kurdyukov A.P., Semyonov A.V. State-space solution to anisotropy-based stochastic ∞-optimization problem // Proc. 13th IFAC World Congress. 1996. V. H, Paper IFAC-3d-01.6. P. 427–432.
  15. Belov I.R., Kustov A.Yu. On the application of Kalman filter in the estimation problem in slightly coloured noise conditions // Large-scale Syst. Control. 2023. V. 103. P. 94–120.
  16. Belov I.R. On the approximation of anisotropic controller by 2-optimal controller // Proc. 32th Mediterranean Conf. Control and Automation. IEEE Xplore. 2024. P. 891–895.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences