PRIMENENIE FIL'TRA LINEYNYKh PSEVDONABLYuDENIY V ZADAChAKh SLEZhENIYa I POZITsIONIROVANIYa PO NABLYuDENIYaM SO SLUChAYNYMI ZAPAZDYVANIYaMI

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Исследуется возможность адаптации и результативность применения фильтра линейных псевдонаблюдений в модели стохастической системы наблюдения со случайными временными задержками между поступающими наблюдениями и фактическим состоянием движущегося объекта. Метод псевдонаблюдений модифицируется для объединения результатов наблюдений, выполняемых несколькими измерительными комплексами, расположенными на разных расстояниях до объекта и имеющими отличающиеся временные задержки. Фильтр реализуется в модели, учитывающей измерения углов направления и дальности. Экспериментальные расчеты выполнены для модельного примера, описывающего движение автономного подводного аппарата, использующего для позиционирования два стационарных акустических маяка.

About the authors

A. V Bosov

Федеральный исследовательский центр «Информатика и управление» РАН

Email: ABosov@frccsc.ru
д-р техн. наук Москва

References

  1. Ehlers F. (Ed.) Autonomous Underwater Vehicles: Design and Practice (Radar, Sonar & Navigation). London, UK: SciTech Publishing, 2020.
  2. Mohsan S.A.H., Khan M.A., Noor F., Ullah I., Alsharif M.H. Towards the unmanned aerial vehicles (UAVs): A comprehensive review // Drones. 2022. V. 6. No. 6 (147).
  3. Burns L.D., Shulgan C. Autonomy: The quest to build the driverless car-and how it will reshape our world. HarperCollins, 2018. 368 p.
  4. Christ R.D., Wernli R.L. The ROV Manual: A User Guide for Remotely Operated Vehicles. 2nd Edition. Oxford, UK: Butterworth-Heinemann, 2013.
  5. Zhu Z., Hu S.-L.J., Li H. Effect on Kalman based underwater tracking due to ocean current uncertainty // Proc. 2016 IEEE/OES Autonomous Underwater Vehicles, Tokyo, Japan, 6–9 November 2016. P. 131–137.
  6. Kebkal K.G., Mashoshin A.I. AUV acoustic positioning methods // Gyroscopy Navig. 2017. V. 8. P. 80–89.
  7. Bosov A. Tracking a Maneuvering Object by Indirect Observations with Random Delays // Drones. 2023. No. 7 (468).
  8. Bosov A. Maneuvering Object Tracking and Movement Parameters Identification by Indirect Observations with Random Delays // Axioms. 2024. No. 13 (668).
  9. Bernstein I., Friedland B. Estimation of the State of a Nonlinear Process in the Presence of Nongaussian Noise and Disturbances // J. Franklin Instit. 1966. V. 281. No. 6. P. 455–480.
  10. Arulampalam S., Maskell S., Gordon N.J., Clapp T. A Tutorial on Particle Filters for On-line Non-linear/Non-Gaussian Bayesian Tracking // IEEE Trans. Signal Processing. 2002. V. 50. No. 2. P. 174–188.
  11. Julier S.J., Uhlmann J.K., Durrant-Whyle H.F. A new approach for filtering nonlinear systems // Proc. IEEE Amer. Control Conf. (ACC'95), 1995. P. 1628–1632.
  12. Pankov A.R., Bosov A.V. Conditionally minimax algorithm for nonlinear system state estimation // IEEE Trans. Autom. Control. 1994. V. 39. No. 8. P. 1617–1620.
  13. Su X., Ullah I., Liu X., Choi D. A Review of Underwater Localization Techniques, Algorithms, and Challenges // J. Sens. 2020. No. 1 (6403161).
  14. Kalman R.E. A new approach to linear filtering and prediction problems // J. Basic Eng. – T. ASME. 1960. V. 82. No. 1. P. 35–45.
  15. Lingren A., Gong K. Position and Velocity Estimation Via Bearing Observations // IEEE Trans. Aerosp. Electron. Syst. 1978. No. AES-14. P. 564–577.
  16. Lin X., Kirubarajan T., Bar-Shalom Y., Maskell S. Comparison of EKF, pseudomeasurement, and particle filters for a bearing-only target tracking problem // Signal and Data Processing of Small Targets 2002, Proceedings of the AEROSENSE 2002, Orlando, FL, USA, 1–5 April 2002; Drummond, O.E., Ed.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2002. V. 4728. P. 240–250.
  17. Konovalenko I., Kuznetsova E., Miller A., et.al. New Approaches to the Integration of Navigation Systems for Autonomous Unmanned Vehicles (UAV) // Sensors. 2018. No. 18 (3010).
  18. Hodges R. Underwater Acoustics: Analysis, Design and Performance of Sonar. N.Y.: Wiley, USA, 2011.
  19. Holler R.A. The evolution of the sonobuoy from World War II to the Cold War // US Navy J. Underwater Acoust. 2014. V. 25. No. 1. P. 322–346.
  20. Morris J. The Kalman filter: A robust estimator for some classes of linear quadratic problems // IEEE Trans. Inf. Theory. 1976. V. 22. No. 5. P. 526–534.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences