Paraptosis and Other Types of Non-Apoptotic Regulated Cell Death

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The review is devoted to modern ideas about paraptosis, as one of the types of regulated cell death, in comparison with other types of cell death. Paraptosis is a form of cell death caused by endoplasmic reticulum stress, accompanied by an accumulation of damaged or misfolded proteins, extensive non-autophagic vacuolation of cisterns of endoplasmic reticulum and, in some cases, mitochondria, with subsequent damage to mitochondria, the cytoskeleton, and cell death. The knowledge regarding the molecular mechanisms of paraptosis is of interest for the treatment of cancers resistant to apoptosis-inducing agents.

About the authors

M. E Solovieva

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Email: m_solovieva@iteb.ru
Pushchino, Russia

Yu. V Shatalin

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Russia

V. S Akatov

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Russia

References

  1. Majno G. and Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am. J. Pathol., 146 (1), 3–15 (1995).
  2. Levin S., Bucci T. J., Cohen S. M., Fix A. S., Hardisty J. F., LeGrand E. K., Maronpot R. R., and Trump B. F. The nomenclature of cell death: recommendations of an ad hoc Committee of the Society of Toxicologic Pathologists. Toxicol. Pathol., 27 (4), 484–490 (1999). doi: 10.1177/019262339902700419
  3. Lee D., Kim I. Y., Saha S. and Choi K. S. Paraptosis in the anti-cancer arsenal of natural products. Pharmacol. Therapeut., 162, 120–133 (2016). doi: 10.1016/j.pharmthera.2016.01.003
  4. Shubin A. V., Demidyuk I. V., Komissarov A. A., Rafieva L. M. and Kostrov S. V. Cytoplasmic vacuolization in cell death and survival. Oncotarget, 7 (34), 55863–55889 (2016). doi: 10.18632/oncotarget.10150
  5. Park S. S., Lee D. M., Lim J. H., Lee D., Park S. J., Kim H. M., Sohn S., Yoon G., Eom Y. W., Jeong S. Y., Choi E. K., and Choi K. S. Pyrrolidine dithiocarbamate reverses Bcl-xL-mediated apoptotic resistance to doxorubicin by inducing paraptosis. Carcinogenesis, 39 (3), 458–470 (2018). doi: 10.1093/carcin/bgy003
  6. Kessel D. Apoptosis, Paraptosis and Autophagy: Death and Survival Pathways Associated with Photodynamic Therapy. Photochem. Photobiol., 95 (1), 119–125 (2019). doi: 10.1111/php.12952
  7. Fontana F., Raimondi M., Marzagalli M., Di Domizio A., and Limonta P. The emerging role of paraptosis in tumor cell biology: Perspectives for cancer prevention and therapy with natural compounds. Biochim. Biophys. Acta. Rev. Cancer, 1873 (2), 188338 (2020). doi: 10.1016/j.bbcan.2020.188338
  8. Raimondi M., Fontana F., Marzagalli M., Audano M., Beretta G., Procacci P., Sartori P., Mitro N., and Limonta P. Ca(2+) overload- and ROS-associated mitochondrial dysfunction contributes to δ-tocotrienolmediated paraptosis in melanoma cells. Apoptosis, 26 (5–6), 277–292 (2021). doi: 10.1007/s10495-021-01668-y
  9. Li G.-N., Zhao X.-J., Wang Z., Luo M.-S., Shi S.-N., Yan D.-M., Li H.-Y., Liu J.-H., Yang Y., Tan J.-H., Zhang Z.-Y., Chen R.-Q., Lai H.-L., Huang X.-Y., Zhou J.-F., Ma D., Fang Y., and Gao Q.-L. Elaiophylin triggers paraptosis and preferentially kills ovarian cancer drug-resistant cells by inducing MAPK hyperactivation. Signal Transduc. Target. Ther., 7 (1), 317 (2022). doi: 10.1038/s41392-022-01131-7
  10. Wang X., Hua P., He C., and Chen M. Non-apoptotic cell death-based cancer therapy: Molecular mechanism, pharmacological modulators, and nanomedicine. Acta Pharm. Sin. B, 12 (9), 3567–3593 (2022). doi: 10.1016/j.apsb.2022.03.020
  11. Monel B., Compton A. A., Bruel T., Amraoui S., BurlaudGaillard J., Roy N., Guivel-Benhassine F., Porrot F., Genin P., Meertens L., Sinigaglia L., Jouvenet N., Weil R., Casartelli N., Demangel C., SimonLoriere E., Moris A., Roingeard P., Amara A., and Schwartz O. Zika virus induces massive cytoplasmic vacuolization and paraptosis-like death in infected cells. EMBO J., 36 (12), 1653–1668 (2017). doi: 10.15252/embj.201695597
  12. Huang X., Huang Y., Yang Y., Wei S., and Qin Q. Involvement of fish signal transducer and activator of transcription 3 (STAT3) in SGIV replication and virus induced paraptosis. Fish Shellfish Immunol., 41 (2), 308–316 (2014). doi: 10.1016/j.fsi.2014.09.011
  13. Mandula J. K., Chang S., Mohamed E., Jimenez R., Sierra-Mondragon R. A., Chang D. C., Obermayer A. N., Moran-Segura C. M., Das S., Vazquez-Martinez J. A., Prieto K., Chen A., Smalley K. S. M., Czerniecki B., Forsyth P., Koya R. C., Ruffell B., Cubillos-Ruiz J. R., Munn D. H., Shaw T. I., Conejo-Garcia J. R., and Rodriguez P. C. Ablation of the endoplasmic reticulum stress kinase PERK induces paraptosis and type I interferon to promote anti-tumor T cell responses. Cancer Cell, 40 (10), 1145–1160.e1149 (2022). doi: 10.1016/j.ccell.2022.08.016
  14. Hanson S., Dharan A., P V. J., Pal S., Nair B. G., Kar R., and Mishra N. Paraptosis: a unique cell death mode for targeting cancer. Front. Pharmacol., 14, 1159409 (2023). doi: 10.3389/fphar.2023.1159409
  15. Kroemer G., El-Deiry W. S., Golstein P., Peter M. E., Vaux D., Vandenabeele P., Zhivotovsky B., Blagosklonny M. V., Malorni W., Knight R. A., Piacentini M., Nagata S., and Melino G. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ., 12 (Suppl. 2), 1463–1467 (2005). doi: 10.1038/sj.cdd.4401724
  16. Kroemer G., Galluzzi L., Vandenabeele P., Abrams J., Alnemri E. S., Baehrecke E. H., Blagosklonny M. V., El-Deiry W. S., Golstein P., Green D. R., Hengartner M., Knight R. A., Kumar S., Lipton S. A., Malorni W., Nunez G., Peter M. E., Tschopp J., Yuan J., Piacentini M., Zhivotovsky B., and Melino G. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ., 16 (1), 3–11 (2009). doi: 10.1038/cdd.2008.150
  17. Galluzzi L., Vitale I., Abrams J. M., Alnemri E. S., Baehrecke E. H., Blagosklonny M. V., Dawson T. M., Dawson V. L., El-Deiry W. S., Fulda S., Gottlieb E., Green D. R., Hengartner M. O., Kepp O., Knight R. A., Kumar S., Lipton S. A., Lu X., Madeo F., Malorni W., Mehlen P., Nunez G., Peter M. E., Piacentini M., Rubinsztein D. C., Shi Y., Simon H. U., Vandenabeele P., White E., Yuan J., Zhivotovsky B., Melino G., and Kroemer G. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ., 19 (1), 107–120 (2012). doi: 10.1038/cdd.2011.96
  18. Galluzzi L., Bravo-San Pedro J. M., Vitale I., Aaronson S. A., Abrams J. M., Adam D., Alnemri E. S., Altucci L., Andrews D., Annicchiarico-Petruzzelli M., Baehrecke E. H., Bazan N. G., Bertrand M. J., Bianchi K., Blagosklonny M. V., Blomgren K., Borner C., Bredesen D. E., Brenner C., Campanella M., Candi E., Cecconi F., Chan F. K., Chandel N. S., Cheng E. H., Chipuk J. E., Cidlowski J. A., Ciechanover A., Dawson T. M., Dawson V. L., De Laurenzi V., De Maria R., Debatin K. M., Di Daniele N., Dixit V. M., Dynlacht B. D., El-Deiry W. S., Fimia G.M., Flavell R. A., Fulda S., Garrido C., Gougeon M. L., Green D. R., Gronemeyer H., Hajnoczky G., Hardwick J. M., Hengartner M. O., Ichijo H., Joseph B., Jost P. J., Kaufmann T., Kepp O., Klionsky D. J., Knight R. A., Kumar S., Lemasters J. J., Levine B., Linkermann A., Lipton S. A., Lockshin R. A., Lopez-Otin C., Lugli E., Madeo F., Malorni W., Marine J. C., Martin S. J., Martinou J. C., Medema J. P., Meier P., Melino S., Mizushima N., Moll U., Munoz-Pinedo C., Nunez G., Oberst A., Panaretakis T., Penninger J. M., Peter M. E., Piacentini M., Pinton P., Prehn J. H., Puthalakath H., Rabinovich G. A., Ravichandran K. S., Rizzuto R., Rodrigues C. M., Rubinsztein D. C., Rudel T., Shi Y., Simon H. U., Stockwell B. R., Szabadkai G., Tait S. W., Tang H. L., Tavernarakis N., Tsujimoto Y., Vanden Berghe T., Vandenabeele P., Villunger A., Wagner E. F., Walczak H., White E., Wood W. G., Yuan J., Zakeri Z., Zhivotovsky B., Melino G., and Kroemer G. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ., 22 (1), 58–73 (2015). doi: 10.1038/cdd.2014.137
  19. Galluzzi L., Vitale I., Aaronson S. A., Abrams J. M., Adam D., Agostinis P., Alnemri E. S., Altucci L., Amelio I., Andrews D. W., Annicchiarico-Petruzzelli M., Antonov A. V., Arama E., Baehrecke E. H., Barlev N. A., Bazan N. G., Bernassola F., Bertrand M. J. M., Bianchi K., Blagosklonny M. V., Blomgren K., Borner C., Boya P., Brenner C., Campanella M., Candi E., Carmona-Gutierrez D., Cecconi F., Chan F. K., Chandel N. S., Cheng E. H., Chipuk J. E., Cidlowski J. A., Ciechanover A., Cohen G. M., Conrad M., Cubillos-Ruiz J. R., Czabotar P. E., D’Angiolella V., Dawson T. M., Dawson V. L., De Laurenzi V., De Maria R., Debatin K. M., DeBerardinis R. J., Deshmukh M., Di Daniele N., Di Virgilio F., Dixit V. M., Dixon S. J., Duckett C. S., Dynlacht B. D., El-Deiry W. S., Elrod J. W., Fimia G. M., Fulda S., Garcia-Saez A. J., Garg A. D., Garrido C., Gavathiotis E., Golstein P., Gottlieb E., Green D. R., Greene L. A., Gronemeyer H., Gross A., Hajnoczky G., Hardwick J. M., Harris I. S., Hengartner M. O., Hetz C., Ichijo H., Jaattela M., Joseph B., Jost P. J., Juin P. P., Kaiser W. J., Karin M., Kaufmann T., Kepp O., Kimchi A., Kitsis R. N., Klionsky D. J., Knight R. A., Kumar S., Lee S. W., Lemasters J. J., Levine B., Linkermann A., Lipton S. A., Lockshin R. A., Lopez-Otin C., Lowe S. W., Luedde T., Lugli E., MacFarlane M., Madeo F., Malewicz M., Malorni W., Manic G., Marine J. C., Martin S. J., Martinou J. C., Medema J. P., Mehlen P., Meier P., Melino S., Miao E. A., Molkentin J. D., Moll U. M., Munoz-Pinedo C., Nagata S., Nunez G., Oberst A., Oren M., Overholtzer M., Pagano M., Panaretakis T., Pasparakis M., Penninger J. M., Pereira D. M., Pervaiz S., Peter M. E., Piacentini M., Pinton P., Prehn J. H. M., Puthalakath H., Rabinovich G. A., Rehm M., Rizzuto R., Rodrigues C. M. P., Rubinsztein D. C., Rudel T., Ryan K. M., Sayan E., Scorrano L., Shao F., Shi Y., Silke J., Simon H. U., Sistigu A., Stockwell B. R., Strasser A., Szabadkai G., Tait S. W. G., Tang D., Tavernarakis N., Thorburn A., Tsujimoto Y., Turk B., Vanden Berghe T., Vandenabeele P., Vander Heiden M. G., Villunger A., Virgin H. W., Vousden K. H., Vucic D., Wagner E. F., Walczak H., Wallach D., Wang Y., Wells J. A., Wood W., Yuan J., Zakeri Z., Zhivotovsky B., Zitvogel L., Melino G., and Kroemer G. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ., 25 (3), 486–541 (2018). doi: 10.1038/s41418-017-0012-4
  20. Song X., Zhu S., Xie Y., Liu J., Sun L., Zeng D., Wang P., Ma X., Kroemer G., Bartlett D. L., Billiar T. R., Lotze M. T., Zeh H. J., Kang R., and Tang D. JTC801 Induces pH-dependent Death Specifically in Cancer Cells and Slows Growth of Tumors in Mice. Gastroenterology, 154 (5), 1480–1493 (2018). doi: 10.1053/j.gastro.2017.12.004
  21. Tsvetkov P. and Coy S. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science, 375 (6586), 1254–1261 (2022). doi: 10.1126/science.abf0529
  22. Vitale I., Pietrocola F., Guilbaud E., Aaronson S. A., Abrams J. M., Adam D., Agostini M., Agostinis P., Alnemri E. S., Altucci L., Amelio I., Andrews D. W., Aqeilan R. I., Arama E., Baehrecke E. H., Balachandran S., Bano D., Barlev N. A., Bartek J., Bazan N. G., Becker C., Bernassola F., Bertrand M. J. M., Bianchi M. E., Blagosklonny M. V., Blander J. M., Blandino G., Blomgren K., Borner C., Bortner C. D., Bove P., Boya P., Brenner C., Broz P., Brunner T., Damgaard R. B., Calin G. A., Campanella M., Candi E., Carbone M., Carmona-Gutierrez D., Cecconi F., Chan F. K. M., Chen G.-Q., Chen Q., Chen Y. H., Cheng E. H., Chipuk J. E., Cidlowski J. A., Ciechanover A., Ciliberto G., Conrad M., Cubillos-Ruiz J. R., Czabotar P. E., D’Angiolella V., Daugaard M., Dawson T. M., Dawson V. L., De Maria R., De Strooper B., Debatin K.-M., Deberardinis R. J., Degterev A., Del Sal G., Deshmukh M., Di Virgilio F., Diederich M., Dixon S. J., Dynlacht B. D., El-Deiry W. S., Elrod J. W., Engeland K., Fimia G. M., Galassi C., Ganini C., Garcia-Saez A. J., Garg A. D., Garrido C., Gavathiotis E., Gerlic M., Ghosh S., Green D. R., Greene L. A., Gronemeyer H., Hacker G., Hajnoczky G., Hardwick J. M., Haupt Y., He S., Heery D. M., Hengartner M. O., Hetz C., Hildeman D. A., Ichijo H., Inoue S., Jaattela M., Janic A., Joseph B., Jost P. J., Kanneganti T.-D., Karin M., Kashkar H., Kaufmann T., Kelly G. L., Kepp O., Kimchi A., Kitsis R. N., Klionsky D. J., Kluck R., Krysko D. V., Kulms D., Kumar S., Lavandero S., Lavrik I. N., Lemasters J. J., Liccardi G., Linkermann A., Lipton S. A., Lockshin R. A., Lopez-Otin C., Luedde T., MacFarlane M., Madeo F., Malorni W., Manic G., Mantovani R., Marchi S., Marine J.-C., Martin S. J., Martinou J.-C., Mastroberardino P. G., Medema J. P., Mehlen P., Meier P., Melino G., Melino S., Miao E. A., Moll U. M., Munoz-Pinedo C., Murphy D. J., Niklison-Chirou M. V., Novelli F., Nunez G., Oberst A., Ofengeim D., Opferman J. T., Oren M., Pagano M., Panaretakis T., Pasparakis M., Penninger J. M., Pentimalli F., Pereira D. M., Pervaiz S., Peter M. E., Pinton P., Porta G., Prehn J. H. M., Puthalakath H., Rabinovich G. A., Rajalingam K., Ravichandran K. S., Rehm M., Ricci J.-E., Rizzuto R., Robinson N., Rodrigues C. M. P., Rotblat B., Rothlin C. V., Rubinsztein D. C., Rudel T., Rufini A., Ryan K. M., Sarosiek K. A., Sawa A., Sayan E., Schroder K., Scorrano L., Sesti F., Shao F., Shi Y., Sica G. S., Silke J., Simon H.-U., Sistigu A., Stephanou A., Stockwell B. R., Strapazzon F., Strasser A., Sun L., Sun E., Sun Q., Szabadkai G., Tait S. W. G., Tang D., Tavernarakis N., Troy C. M., Turk B., Urbano N., Vandenabeele P., Vanden Berghe T., Vander Heiden M. G., Vanderluit J. L., Verkhratsky A., Villunger A., von Karstedt S., Voss A. K., Vousden K. H., Vucic D., Vuri D., Wagner E. F., Walczak H., Wallach D., Wang R., Wang Y., Weber A., Wood W., Yamazaki T., Yang H.-T., Zakeri Z., Zawacka-Pankau J. E., Zhang L., Zhang H., Zhivotovsky B., Zhou W., Pia centini M., Kroemer G., and Galluzzi L. Apoptotic cell death in disease—Current understanding of the NCCD 2023. Cell Death Differ., 30 (5), 1097–1154 (2023). doi: 10.1038/s41418-023-01153-w
  23. Liu X., Yang W., Guan Z., Yu W., Fan B., Xu N., and Liao D. J. There are only four basic modes of cell death, although there are many ad-hoc variants adapted to different situations. Cell Biosci., 8 (1), 6 (2018). doi: 10.1186/s13578-018-0206-6
  24. Tang D., Kang R., Berghe T. V., Vandenabeele P., and Kroemer G. The molecular machinery of regulated cell death. Cell Res., 29 (5), 347–364 (2019). doi: 10.1038/s41422-019-0164-5
  25. Yuan J. and Ofengeim D. A guide to cell death pathways. Nat. Rev. Mol. Cell Biol. (2023). doi: 10.1038/s41580-023-00689-6
  26. Maltese W. A. and Overmeyer J. H. Methuosis: nonapoptotic cell death associated with vacuolization of macropinosome and endosome compartments. Am. J. Pathol., 184 (6), 1630–1642 (2014). doi: 10.1016/j.ajpath.2014.02.028
  27. Sauler M., Bazan I. S., and Lee P. J. Cell Death in the Lung: The Apoptosis-necroptosis axis. Ann. Rev. Physiol., 81, 375-402 (2019). doi: 10.1146/annurev-physiol-020518-114320
  28. Galluzzi L., Kepp O., and Kroemer G. Mitochondrial regulation of cell death: a phylogenetically conserved control. Microb. cell, 3 (3), 101–108 (2016). doi: 10.15698/mic2016.03.483
  29. Yashin D. V., Romanova E. A., Ivanova O. K., and Sashchenko L. P. The Tag7-Hsp70 cytotoxic complex induces tumor cell necroptosis via permeabilisation of lysosomes and mitochondria. Biochimie, 123, 32–36 (2016). doi: 10.1016/j.biochi.2016.01.007
  30. Park W., Wei S., Kim B.-S., Kim B., Bae S.-J., ChaeY. C., Ryu D., and Ha K.-T. Diversity and complexity of cell death: a historical review. Exp. Mol. Med., 55 (8), 1573–1594 (2023). doi: 10.1038/s12276-023-01078-x
  31. Alu A., Han X., Ma X., Wu M., Wei Y., and Wei X. The role of lysosome in regulated necrosis. Acta Pharm. Sin. B, 10 (10), 1880–1903 (2020). doi: 10.1016/j.apsb.2020.07.003
  32. Liu X., Zhang Z., Ruan J., Pan Y., Magupalli V. G., Wu H., and Lieberman J. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature, 535 (7610), 153–158 (2016). doi: 10.1038/nature18629
  33. Vorobjeva N. V. and Chernyak B. V. NETosis: molecular mechanisms, role in physiology and pathology. Biochemistry (Moscow), 85 (10), 1178–1190 (2020). doi: 10.1134/s0006297920100065
  34. Mishra P. K., Adameova A., Hill J. A., Baines C. P., Kang P. M., Downey J. M., Narula J., Takahashi M., Abbate A., Piristine H. C., Kar S., Su S., Higa J. K., Kawasaki N. K., and Matsui T. Guidelines for evaluating myocardial cell death. Am. J. Physiol. Heart Circ. Physiol., 317 (5), H891–h922 (2019). doi: 10.1152/ajpheart.00259.2019
  35. Scott J., Lemberg Kathryn M., Lamprecht Michael R., Skouta R., Zaitsev E. M., Gleason C. E., Patel D. N., Bauer A. J., Cantley A. M., Yang W. S., Morrison B., and Stockwell B. R. Ferroptosis: An Iron-dependent form of nonapoptotic cell death. Cell, 149 (5), 10601072 (2012). DOI: https://doi.org/10.1016/j.cell.2012.03.042
  36. Grignano E., Birsen R., Chapuis N., and Bouscary D. From Iron chelation to overload as a therapeutic strategy to induce ferroptosis in leukemic cells. Front. Oncol., 10, 586530 (2020). doi: 10.3389/fonc.2020.586530
  37. Xie Y., Hou W., Song X., Yu Y., Huang J., Sun X., Kang R., and Tang D. Ferroptosis: process and function. Cell Death Differ., 23 (3), 369–379 (2016). doi: 10.1038/cdd.2015.158
  38. Moon J. H., Jeong J. K., and Park S. Y. Deferoxamine inhibits TRAIL-mediated apoptosis via regulation of autophagy in human colon cancer cells. Oncol. Rep., 33 (3), 1171-1176 (2015). doi: 10.3892/or.2014.3676
  39. Solovieva M. E., Solovyev V. V., Kudryavtsev A. A., Trizna Y. A., and Akatov V. S. Vitamin B12b enhances the cytotoxicity of dithiothreitol. Free Rad. Biol. Med., 44 (10), 1846–1856 (2008). doi: 10.1016/j.freeradbiomed.2008.02.002
  40. Gao H., Bai Y., Jia Y., Zhao Y., Kang R., Tang D., and Dai E. Ferroptosis is a lysosomal cell death process. Biochem. Biophys. Res. Commun., 503 (3), 1550–1556 (2018). doi: 10.1016/j.bbrc.2018.07.078
  41. Zhou B., Liu J., Kang R., Klionsky D. J., Kroemer G., and Tang D. Ferroptosis is a type of autophagy-dependent cell death. Semin. Cancer Biol., 66, 89–100 (2020). doi: 10.1016/j.semcancer.2019.03.002
  42. Yashin D. V., Ivanova O. K., Soshnikova N. V., Sheludchenkov A. A., Romanova E. A., Dukhanina E. A., Tonevitsky A. G., Gnuchev N. V., Gabibov A. G., Georgiev G. P., and Sashchenko L. P. Tag7 (PGLYRP1) in complex with Hsp70 induces alternative cytotoxic processes in tumor cells via TNFR1 receptor. J. Biol. Chem., 290 (35), 21724–21731 (2015). doi: 10.1074/jbc.M115.639732
  43. Eloranta K., Cairo S., Liljestrom E., Soini T., Kyronlahti A., Judde J. G., Wilson D. B., Heikinheimo M., and Pihlajoki M. Chloroquine triggers cell death and inhibits PARPs in cell models of aggressive hepatoblastoma. Front. Oncol., 10, 1138 (2020). doi: 10.3389/fonc.2020.01138
  44. Mauvezin C., Nagy P., Juhasz G., and Neufeld T. P. Autophagosome-lysosome fusion is independent of VATPasemediated acidification. Nat. Commun., 6, 7007 (2015). doi: 10.1038/ncomms8007
  45. Yuan N., Song L., Zhang S., Lin W., Cao Y., Xu F., Fang Y., Wang Z., Zhang H., Li X., Wang Z., Cai J., Wang J., Zhang Y., Mao X., Zhao W., Hu S., Chen S., and Wang J. Bafilomycin A1 targets both autophagy and apoptosis pathways in pediatric B-cell acute lymphoblastic leukemia. Haematologica, 100 (3), 345–356 (2015). doi: 10.3324/haematol.2014.113324
  46. Liu Y., Shoji-Kawata S., Sumpter R. M., Jr., Wei Y., Ginet V., Zhang L., Posner B., Tran K. A., GreenD. R., Xavier R. J., Shaw S. Y., Clarke P. G., Puyal J., and Levine B. Autosis is a Na+,K+-ATPaseregulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proc. Natl. Acad. Sci. USA, 110 (51), 20364–20371 (2013). doi: 10.1073/pnas.1319661110
  47. Bialik S. and Dasari S. K. Autophagy-dependent cell death −where, how and why a cell eats itself to death. J. Cell Sci., 131 (18), (2018). doi: 10.1242/jcs.215152
  48. Bai L., Wu Q., Zhang X., and Zhao Y. Autosis as a selective type of cell death. Front. Cell Dev. Biol., 11, 1164681 (2023). doi: 10.3389/fcell.2023.1164681
  49. Overholtzer M., Mailleux A. A., Mouneimne G., Normand G., Schnitt S. J., King R. W., Cibas E. S., and Brugge J. S. A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell, 131 (5), 966-979 (2007). doi: 10.1016/j.cell.2007.10.040
  50. Martins I., Raza S. Q., Voisin L., Dakhli H., Law F., De Jong D., Allouch A., Thoreau M., Brenner C., Deutsch E., and Perfettini J. L. Entosis: The emerging face of non-cell-autonomous type IV programmed death. Biomed. J., 40 (3), 133–140 (2017). doi: 10.1016/j.bj.2017.05.001
  51. Garanina A. S., Kisurina-Evgenieva O. P., ErokhinaM. V., Smirnova E. A., Factor V. M., and Onishchenko G. E. Consecutive entosis stages in human substrate-dependent cultured cells. Sci. Rep., 7 (1), 12555 (2017). doi: 10.1038/s41598-017-12867-6
  52. Durgan J., Tseng Y. Y., Hamann J. C., Domart M. C., Collinson L., Hall A., Overholtzer M., and Florey O. Mitosis can drive cell cannibalism through entosis. eLife, 6 (2017). doi: 10.7554/eLife.27134
  53. Solovieva M., Shatalin Y., Odinokova I., Krestinina O., Baburina Y., Mishukov A., Lomovskaya Y., Pavlik L., Mikheeva I., Holmuhamedov E., and Akatov V. Disulfiram oxy-derivatives induce entosis or paraptosis-like death in breast cancer MCF-7 cells depending on the duration of treatment. Biochim. Biophys. Acta. Gen. Subj., 1866 (9), 130184 (2022). doi: 10.1016/j.bbagen.2022.130184
  54. Guicciardi M. E., Deussing J., Miyoshi H., Bronk S. F., Svingen P. A., Peters C., Kaufmann S. H., and Gores G. J. Cathepsin B contributes to TNF-alphamediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J. Clin. Invest., 106 (9), 1127–1137 (2000). doi: 10.1172/jci9914
  55. Yu S. W., Wang H., Poitras M. F., Coombs C., Bowers W. J., Federoff H. J., Poirier G. G., Dawson T. M., and Dawson V. L. Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science, 297 (5579), 259–263 (2002). doi: 10.1126/science.1072221
  56. Деев Р. В., Билялов А. И. и Жампеисов Т. М. Современные представления о клеточной гибели. Гены и Клетки, XIII (1), 6–19 (2018).doi: 10.23868/201805001
  57. Weaver A. N. and Yang E. S. Beyond DNA Repair: additional functions of PARP-1 in cancer. Front. Oncol., 3, 290 (2013). doi: 10.3389/fonc.2013.00290
  58. Lee S. and Karki R. AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence. Nature, 597 (7876), 415–419 (2021). doi: 10.1038/s41586-021-03875-8
  59. Shi C. and Cao P. PANoptosis: a cell death characterized by pyroptosis, apoptosis, and necroptosis. J. Inflamm. Res., 16, 1523–1532 (2023). doi: 10.2147/jir.s403819
  60. Holze C., Michaudel C., Mackowiak C., Haas D. A., Benda C., Hubel P., Pennemann F. L., Schnepf D., Wettmarshausen J., Braun M., Leung D. W., and Amarasinghe G. K. Oxeiptosis, a ROS-induced caspaseindependent apoptosis-like cell-death pathway. Nat. Immunol., 19 (2), 130–140 (2018). doi: 10.1038/s41590-017-0013-y
  61. Pallichankandy S., Thayyullathil F., Cheratta A. R., Subburayan K., Alakkal A., Sultana M., Drou N., Arshad M., Tariq S., and Galadari S. Targeting oxeiptosismediated tumor suppression: a novel approach to treat colorectal cancers by sanguinarine. Cell Death Discov., 9 (1), 94 (2023). doi: 10.1038/s41420-023-01376-3
  62. Zhang J., Gao R. F., Li J., Yu K. D., and Bi K. X. Alloimperatorin activates apoptosis, ferroptosis, and oxeiptosis to inhibit the growth and invasion of breast cancer cells in vitro. Biochem. Cell Biol., 100 (3), 213–222 (2022). doi: 10.1139/bcb-2021-0399
  63. Scaturro P. and Pichlmair A. Oxeiptosis: a discreet way to respond to radicals. Curr. Opin. Immunol., 56, 37–43 (2019). doi: 10.1016/j.coi.2018.10.006
  64. Villalpando-Rodriguez G. E., and Gibson S. B. Reactive oxygen species (ROS) regulates different types of cell death by acting as a rheostat. Oxid. Med. Cell Longev., 2021, 9912436 (2021). doi: 10.1155/2021/9912436
  65. Que D., Kuang F., Kang R., Tang D., and Liu J. ACSS2-mediated NF-κB activation promotes alkaliptosis in human pancreatic cancer cells. Sci. Rep., 13 (1), 1483 (2023). doi: 10.1038/s41598-023-28261-4
  66. Chen F., Zhu S., Kang R., Tang D., and Liu J. ATP6V0D1 promotes alkaliptosis by blocking STAT3mediated lysosomal pH homeostasis. Cell Rep., 42 (1), 111911 (2023). doi: 10.1016/j.celrep.2022.111911
  67. Ciesielski H. M., Nishida H., Takano T., Fukuhara A., Otani T., Ikegawa Y., Okada M., Nishimura T., Furuse M., and Yoo S. K. Erebosis, a new cell death mechanism during homeostatic turnover of gut enterocytes. PLoS Biol., 20 (4), e3001586 (2022). doi: 10.1371/journal.pbio.3001586
  68. Liu X., Nie L., Zhang Y., Yan Y., Wang C., Colic M., Olszewski K., Horbath A., Chen X., Lei G., Mao C., Wu S., Zhuang L., Poyurovsky M. V., James You M., Hart T., Billadeau D. D., Chen J., and Gan B. Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis. Nat. Cell Biol., 25 (3), 404–414 (2023). doi: 10.1038/s41556-023-01091-2
  69. Wang L.-Y., Liu X.-J., Li Q.-Q., Zhu Y., Ren H.-L., Song J.-N., Zeng J., Mei J., Tian H.-X., Rong D.-C., and Zhang S.-H. The romantic history of signaling pathway discovery in cell death: an updated review. Mol. Cell. Biochem. (2023). doi: 10.1007/s11010-023-04873-2
  70. Xie J., Yang Y., Gao Y., and He J. Cuproptosis: mechanisms and links with cancers. Mol. Cancer, 22 (1), 46 (2023). doi: 10.1186/s12943-023-01732-y
  71. Chen D., Cui Q. C., Yang H., and Dou Q. P. Disulfiram, a clinically used anti-alcoholism drug and copperbinding agent, induces apoptotic cell death in breast cancer cultures and xenografts via inhibition of the proteasome activity. Cancer Res., 66 (21), 10425–10433 (2006). doi: 10.1158/0008-5472.can-06-2126
  72. Cen D., Brayton D., Shahandeh B., Meyskens F. L., Jr., and Farmer P. J. Disulfiram facilitates intracellular Cu uptake and induces apoptosis in human melanoma cells. J. Med. Chem., 47 (27), 6914–6920 (2004). doi: 10.1021/jm049568z
  73. Tardito S., Bassanetti I., Bignardi C., Elviri L., Tegoni M., Mucchino C., Bussolati O., Franchi-Gazzola R., and Marchio L. Copper binding agents acting as copper ionophores lead to caspase inhibition and paraptotic cell death in human cancer cells. J. Am. Chem. Soc., 133 (16), 6235–6242 (2011). doi: 10.1021/ja109413c
  74. Hu L., Wang H., Zhao Y., and Wang J. 125I seeds radiation induces paraptosis-like cell death via PI3K/AKT signaling pathway in HCT116 cells. Biomed. Res. Int., 2016, 8145495 (2016). doi: 10.1155/2016/8145495
  75. Wang W. B., Feng L. X., Yue Q. X., Wu W. Y., Guan S. H., Jiang B. H., Yang M., Liu X., and Guo D. A. Paraptosis accompanied by autophagy and apoptosis was induced by celastrol, a natural compound with influence on proteasome, ER stress and Hsp90. J. Cell Physiol., 227 (5), 2196–2206 (2012). doi: 10.1002/jcp.22956
  76. Yoon M. J., Kang Y. J., Lee J. A., Kim I. Y., Kim M. A., Lee Y. S., Park J. H., Lee B. Y., Kim I. A., Kim H. S., Kim S. A., Yoon A. R., Yun C. O., Kim E. Y., Lee K., and Choi K. S. Stronger proteasomal inhibition and higher CHOP induction are responsible for more effective induction of paraptosis by dimethoxycurcumin than curcumin. Cell Death Dis., 5 (3), e1112 (2014). doi: 10.1038/cddis.2014.85
  77. Yoon M. J., Kim E. H., Kwon T. K., Park S. A., and Choi K. S. Simultaneous mitochondrial Ca2+ overload and proteasomal inhibition are responsible for the induction of paraptosis in malignant breast cancer cells. Cancer Lett., 324 (2), 197–209 (2012). doi: 10.1016/j.canlet.2012.05.018
  78. Korsnes M. S., Espenes A., Hetland D. L., and Hermansen L. C. Paraptosis-like cell death induced by yessotoxin. Toxicol. in vitro, 25 (8), 1764–1770 (2011). doi: 10.1016/j.tiv.2011.09.005
  79. Alfonso A., Vieytes M. R. and Botana L. M. Yessotoxin, a promising therapeutic tool. Marine Drugs, 14 (2), (2016). doi: 10.3390/md14020030
  80. Li B., Zhao J., Wang C. Z., Searle J., He T. C., Yuan C. S., and Du W. Ginsenoside Rh2 induces apoptosis and paraptosis-like cell death in colorectal cancer cells through activation of p53. Cancer Lett., 301 (2), 185–192 (2011). doi: 10.1016/j.canlet.2010.11.015
  81. Wang Y., Zhu X., Yang Z., and Zhao X. Honokiol induces caspase-independent paraptosis via reactive oxygen species production that is accompanied by apoptosis in leukemia cells. Biochem. Biophys. Res. Commun., 430 (3), 876–882 (2013). doi: 10.1016/j.bbrc.2012.12.063
  82. Liu X., Gu Y., and Bian Y. Honokiol induces paraptosislike cell death of acute promyelocytic leukemia via mTOR & MAPK signaling pathways activation. Apoptosis, 26 (3–4), 195–208 (2021). doi: 10.1007/s10495-020-01655-9
  83. Zhang J. S., Li D. M., Ma Y., He N., Gu Q., Wang F. S., Jiang S. Q., Chen B. Q., and Liu J. R. γ-Tocotrienol induces paraptosis-like cell death in human colon carcinoma SW620 cells. PLoS One, 8 (2), e57779 (2013). doi: 10.1371/journal.pone.0057779
  84. Kar R., Singha P. K., Venkatachalam M. A., and Saikumar P. A novel role for MAP1 LC3 in nonautophagic cytoplasmic vacuolation death of cancer cells. Oncogene, 28 (28), 2556–2568 (2009). doi: 10.1038/onc.2009.118
  85. Tsai T. L., Wang H. C., Hung C. H., Lin P. C., LeeY. S., Chen H. H. W., and Su W. C. Wheat germ agglutinininduced paraptosis-like cell death and protective autophagy is mediated by autophagy-linked FYVE inhibition. Oncotarget, 8 (53), 91209–91222 (2017). doi: 10.18632/oncotarget.20436
  86. Seo M. J., Lee D. M., Kim I. Y., Lee D., Choi M.-K., Lee J.-Y., Park S. S., Jeong S.-Y., Choi E. K., and Choi K. S. Gambogic acid triggers vacuolization-associated cell death in cancer cells via disruption of thiol proteostasis. Cell Death Dis., 10 (3), 187 (2019). doi: 10.1038/s41419–019-1360-4
  87. Mi X., Wang C., Sun C., Chen X., Huo X., Zhang Y., Li G., Xu B., Zhang J., Xie J., Wang Z., and Li J. Xanthohumol induces paraptosis of leukemia cells through p38 mitogen activated protein kinase signaling pathway. Oncotarget, 8 (19), 31297–31304 (2017). doi: 10.18632/oncotarget.16185
  88. Bury M., Girault A., Megalizzi V., Spiegl-Kreinecker S., Mathieu V., Berger W., Evidente A., Kornienko A., Gailly P., Vandier C., and Kiss R. Ophiobolin A induces paraptosis-like cell death in human glioblastoma cells by decreasing BKCa channel activity. Cell Death Dis., 4 (3), e561 (2013). doi: 10.1038/cddis.2013.85
  89. Kim I. Y., Shim M. J., Lee D. M., Lee A. R., Kim M.A., Yoon M. J., Kwon M. R., Lee H. I., Seo M. J., Choi Y. W., and Choi K. S. Loperamide overcomes the resistance of colon cancer cells to bortezomib by inducing CHOP-mediated paraptosis-like cell death. Biochem. Pharmacol., 162, 41–54 (2019). doi: 10.1016/j.bcp.2018.12.006
  90. Gafar A. A., Draz H. M., Goldberg A. A., Bashandy M. A., Bakry S., Khalifa M. A., AbuShair W., Titorenko V. I., and Sanderson J. T. Lithocholic acid induces endoplasmic reticulum stress, autophagy and mitochondrial dysfunction in human prostate cancer cells. Peer J., 4, e2445 (2016). doi: 10.7717/peerj.2445
  91. Wasik A. M., Almestrand S., Wang X., Hultenby K., Dackland A. L., Andersson P., Kimby E., Christensson B., and Sander B. WIN55,212-2 induces cytoplasmic vacuolation in apoptosis-resistant MCL cells. Cell Death Dis., 2 (11), e225 (2011). doi: 10.1038/cddis.2011.106
  92. Sun Q., Chen T., Wang X., and Wei X. Taxol induces paraptosis independent of both protein synthesis and MAPK pathway. J. Cell. Physiol., 222 (2), 421–432 (2010). doi: 10.1002/jcp.21982
  93. Kim S. H., Shin H. Y., Kim Y. S., Kang J. G., Kim C. S., Ihm S. H., Choi M. G., Yoo H. J., and Lee S. J. Tunicamycin induces paraptosis potentiated by inhibition of BRAFV600E in FRO anaplastic thyroid carcinoma cells. Anticancer Res., 34 (9), 4857–4868 (2014).
  94. Hu L., Shi J., Shen D., Zhai X., Liang D., Wang J., Xie C., Xia Z., Cui J., Liu F., Du S., Meng S., and Piao H. Osimertinib induces paraptosis and TRIP13 confers resistance in glioblastoma cells. Cell Death Discov., 9 (1), 333 (2023). doi: 10.1038/s41420-023-01632-6
  95. Nguyen P. L., Lee C. H., Lee H., and Cho J. Induction of paraptotic cell death in breast cancer cells by a novel pyrazolo[3,4-h]quinoline derivative through ROS production and endoplasmic reticulum stress. Antioxidants, 11 (1), 117 (2022). doi: 10.3390/antiox11010117
  96. Chen X., Zhang X., Chen J., Yang Q., Yang L., Xu D., Zhang P., Wang X., and Liu J. Hinokitiol copper complex inhibits proteasomal deubiquitination and induces paraptosis-like cell death in human cancer cells. Eur. J. Pharmacol., 815, 147–155 (2017). doi: 10.1016/j.ejphar.2017.09.003
  97. Hager S., Pape V. F. S., Posa V., Montsch B., Uhlik L., Szakacs G., Toth S., Jabronka N., Keppler B. K., Kowol C. R., Enyedy E A., and Heffeter P. High copper complex stability and slow reduction kinetics as key parameters for improved activity, paraptosis induction, and impact on drug-resistant cells of anticancer thiosemicarbazones. Antioxid. Redox Signal., 33 (6), 395–414 (2020). doi: 10.1089/ars.2019.7854
  98. Solovieva M., Shatalin Y., Fadeev R., Krestinina O., Baburina Y., Kruglov A., Kharechkina E., Kobyakova M., Rogachevsky V., Shishkova E., and Akatov A. V. Vitamin B(12b) Enhances the cytotoxicity of diethyldithiocarbamate in a synergistic manner, inducing the paraptosis-like death of human larynx carcinoma cells. Biomolecules, 10 (1), (2020). doi: 10.3390/biom10010069
  99. Solovieva M., Shatalin Y., Odinokova I., Krestinina O., Baburina Y., Lomovskaya Y., Pankratov A., Pankratova N., Buneeva O., Kopylov A., Medvedev A., and Akatov V. Disulfiram oxy-derivatives suppress protein retrotranslocation across the ER membrane to the cytosol and initiate paraptosis-like cell death. Membranes (12), 845, (2022). doi: 10.3390/membranes12090845
  100. Wang Y., Wen X., Zhang N., Wang L., Hao D., Jiang X., and He G. Small-molecule compounds target paraptosis to improve cancer therapy. Biomed. Pharmacother., 118, 109203 (2019). doi: 10.1016/j.biopha.2019.109203
  101. Chen F., Tang H., Cai X., Lin J., Xiang L., Kang R., and Liu J. Targeting paraptosis in cancer: opportunities and challenges. Cancer Gene Ther., (2024). doi: 10.1038/s41417-023-00722-y
  102. Sperandio S., de Belle I., and Bredesen D. E. An alternative, nonapoptotic form of programmed cell death. Proc. Natl. Acad. Sci. USA, 97 (26), 14376–14381 (2000). doi: 10.1073/pnas.97.26.14376
  103. Sperandio S., Poksay K., de Belle I., Lafuente M. J., Liu B., Nasir J., and Bredesen D. E. Paraptosis: mediation by MAP kinases and inhibition by AIP-1/Alix. Cell Death Differ., 11 (10), 1066–1075 (2004). doi: 10.1038/sj.cdd.4401465
  104. Liu S., Tian Y., Liu C., Gui Z., Yu T., and Zhang L. TNFRSF19 promotes endoplasmic reticulum stressinduced paraptosis via the activation of the MAPK pathway in triple-negative breast cancer cells. Cancer Gene Ther., 31 (2), 217–227 (2024). doi: 10.1038/s41417-023-00696-x
  105. Hoa N., Myers M. P., Douglass T. G., Zhang J. G., Delgado C., Driggers L., Callahan L. L., VanDeusen G., Pham J. T., Bhakta N., Ge L., and Jadus M. R. Molecular mechanisms of paraptosis induction: implications for a non-genetically modified tumor vaccine. PLoS One, 4 (2), e4631 (2009). doi: 10.1371/journal.pone.0004631
  106. Kim I. Y., Kwon M., Choi M. K., Lee D., Lee D. M., Seo M. J., and Choi K. S. Ophiobolin A kills human glioblastoma cells by inducing endoplasmic reticulum stress via disruption of thiol proteostasis. Oncotarget, 8 (63), 106740–106752 (2017). doi: 10.18632/oncotarget.22537
  107. Hager S., Korbula K., Bielec B., Grusch M., Pirker C., Schosserer M., Liendl L., Lang M., Grillari J., Nowikovsky K., Pape V. F. S., Mohr T., Szakacs G., Keppler B. K., Berger W., Kowol C. R., and Heffeter P. The thiosemicarbazone Me(2)NNMe(2) induces paraptosis by disrupting the ER thiol redox homeostasis based on protein disulfide isomerase inhibition. Cell Death Dis., 9 (11), 1052 (2018). doi: 10.1038/s41419-018-1102-z
  108. Lee H. J., Lee D. M., Seo M. J., Kang H. C., Kwon S. K., and Choi K. S. PSMD14 targeting triggers paraptosis in breast cancer cells by inducing proteasome inhibition and Ca2+ imbalance. Int. J. Mol. Sci., 23 (5), (2022). doi: 10.3390/ijms23052648
  109. Wang L., Gundelach J. H., and Bram R. J. Cycloheximide promotes paraptosis induced by inhibition of cyclophilins in glioblastoma multiforme. Cell Death Dis., 8 (5), e2807 (2017). doi: 10.1038/cddis.2017.217
  110. Dumay A., Rincheval V., Trotot P., Mignotte B., and Vayssiere J. L. The superoxide dismutase inhibitor diethyldithiocarbamate has antagonistic effects on apoptosis by triggering both cytochrome c release and caspase inhibition. Free Rad. Biol. Med., 40 (8), 1377–1390 (2006). doi: 10.1016/j.freeradbiomed.2005.12.005
  111. Zhu D., Chen C., Xia Y., Kong L. Y., and Luo J. A purified resin glycoside fraction from pharbitidis semen induces paraptosis by activating chloride intracellular channel-1 in human colon cancer cells. Integr. Cancer Ther., 18, 1534735418822120 (2019). doi: 10.1177/1534735418822120
  112. Hoa N. T., Zhang J. G., Delgado C. L., Myers M. P., Callahan L. L., Vandeusen G., Schiltz P. M., Wepsic H. T., and Jadus M. R. Human monocytes kill M-CSF-expressing glioma cells by BK channel activation. Lab. Invest., 87 (2), 115–129 (2007). doi: 10.1038/labinvest.3700506
  113. Allan L. A., Morrice N., Brady S., Magee G., Pathak S., and Clarke P. R. Inhibition of caspase-9 through phosphorylation at Thr 125 by ERK MAPK. Nat. Cell Biol., 5 (7), 647–654 (2003). doi: 10.1038/ncb1005
  114. Kim E., Lee D. M., Seo M. J., Lee H. J., and Choi K. S. Intracellular Ca2+ Imbalance Critically Contributes to Paraptosis. Front. Cell Dev. Biol., 8 (1703), (2021). doi: 10.3389/fcell.2020.607844
  115. Pyrczak-Felczykowska A., Reekie T. A., Jąkalski M., Hać A., Malinowska M., Pawlik A., Ryś K., GuzowKrzemińska B., and Herman-Antosiewicz A. The isoxazole derivative of usnic acid induces an er stress response in breast cancer cells that leads to paraptosis-like cell death. Int. J. Mol. Sci., 23 (3), 1802 (2022). doi: 10.3390/ijms23031802
  116. Yokoi K., Yamaguchi K., and Umezawa M. Induction of paraptosis by cyclometalated iridium complex-peptide hybrids and CGP37157 via a mitochondrial Ca2+ overload triggered by membrane fusion between mitochondria and the endoplasmic reticulum. Biochemistry, 61 (8), 639–655 (2022). doi: 10.1021/acs.biochem.2c00061
  117. Singha P. K., Pandeswara S., Venkatachalam M. A., and Saikumar P. Manumycin A inhibits triple-negative breast cancer growth through LC3-mediated cytoplasmic vacuolation death. Cell Death Dis., 4 (1), e457 (2013). doi: 10.1038/cddis.2012.192
  118. Zhang C., Jiang Y., Zhang J., Huang J., and Wang J. 8-p-Hdroxybenzoyl tovarol induces paraptosis like cell death and protective autophagy in human cervical cancer hela cells. Int. J. Mol. Sci., 16 (7), 14979–14996 (2015).
  119. Lee D. M. and Kim I. Y. Akt enhances the vulnerability of cancer cells to VCP/p97 inhibition-mediated paraptosis. Cell Death Dis., 15 (1), 48 (2024). doi: 10.1038/s41419-024-06434-x
  120. Шубин А. В. Протеазы как цитотоксические агенты и маркеры злокачественных опухолей легкого : Дис. ... канд. биол. наук (Инст. молекулярной биологии им. В.А. Энгельгарда РАН, М., 2014).
  121. Wang C., Li T. K., Zeng C. H., Fan R., Wang Y., Zhu G. Y., and Guo J. H. Iodine-125 seed radiation induces ROS-mediated apoptosis, autophagy and paraptosis in human esophageal squamous cell carcinoma cells. Oncol. Rep., 43 (6), 2028–2044 (2020). doi: 10.3892/or.2020.7576

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences