Superconducting and magnetic properties changes of complex rhodium borides RERh3.8Ru0.2B4 in the series of RE = (Gd, Dy, Ho, Er, Y)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Magnetic properties and superconducting characteristics of borides RERh3.8Ru0.2B4 with LuRu4B4 type structure (RE = Y, Er, Ho, Dy), as well as compounds GdRh3.8Ru0.2B4 have been investigated in order to establish formation patterns of superconducting and magnetic subsystems in presented compounds, and their mutual influence. The analysis showed that there is no direct relationship between the critical temperature (Tc) of RERh3.8Ru0.2B4 compounds and their magnetic subsystem. However, a monotonic decrease in the RERh3.8Ru0.2B4 borides critical temperature at successive replacement of RE with Y by Er, Ho, Dy has been established. In this case, the Tc depends linearly on S(S+1), where S is the spin quantum number of the RE+3 ion. Such critical temperature behavior can be associated with the exchange interaction of the conduction electrons spins with the magnetic moments of the RE+3 ions, which increases as the spin quantum number S of the ion increases. The absence of superconductivity in the GdRh3.8Ru0.2B4 compound is also within the established pattern.

Full Text

Restricted Access

About the authors

S. A. Lachenkov

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: vlasenkovlad@gmail.com
Russian Federation, Moscow

V. A. Vlasenko

P.N. Lebedev Physical Institute, Russian Academy of Sciences

Author for correspondence.
Email: vlasenkovlad@gmail.com
Russian Federation, Moscow

A. Yu. Tsvetkov

P.N. Lebedev Physical Institute, Russian Academy of Sciences

Email: vlasenkovlad@gmail.com
Russian Federation, Moscow

L. F. Kulikova

Institute for High Pressure Physics, Russian Academy of Sciences

Email: vlasenkovlad@gmail.com
Russian Federation, Troitsk, Moscow, 108840

References

  1. Maple M.B., Fischer O. Superconductivity in Ternary Compounds II. Superconductivity and Magnetism. N.Y.: Springer-Verlag, 1982. P. 308.
  2. Wolowiec C.T., White B.D., Maple M.B. Conventional Magnetic Superconductors // Physica C: Superconductivity Appl. 2015. V. 514. P. 113–129. https://doi.org/10.1016/j.physc.2015.02.050
  3. Johnston D.C. Superconductivity in a New Ternary Structure Class of Boride Compounds // Solid State Commun. 1977. V. 24. No. 10. P. 699–702. https://doi.org/10.1016/0038-1098(77)90078-3
  4. Yvon K., Johnston D.C. Orthorhombic LuRh4B4–a New Polytype of RT4B4 Stoichiometry // Acta Crystal. Sect. B: Struct. Sci. 1982. V. 38. No. 1. P. 247–250. https://doi.org/10.1107/S0567740882002490
  5. Matthias B.T., Corenzwit E., Vandenberg J.M., Barz H.E. High Superconducting Transition Temperatures of New Rare Earth Ternary Borides // Proc. Natl. Acad. Sci. USA. 1977. V. 74. No. 4. P. 1334–1335. https://doi.org/10.1073/pnas.74.4.1334
  6. Jatmika J., Maruyama H., Rahman M.S., Sakai A., Nakatsuji S., Iyo A., Ebihara T. Superconducting Properties of the Ternary Boride YRh4B4 // Supercond. Sci. Technol. 2020. V. 33. No. 12. P. 125006. https://doi.org/10.1088/1361-6668/abbb18
  7. Majkrzak C.F., Cox D.E., Shirane G., Mook H.A., Hamaker H.C., MacKay H.B., Fisk Z., Maple M.B. Neutron-diffraction Study of the Magnetic Ordering in Superconducting NdRh4B4 // Phys. Rev. B: Condens. Matter. 1982. V. 26. No. 1. P. 245–249. https://doi.org/10.1103/PhysRevB.26.245
  8. Hamaker H.C., Woolf L.D., MacKay H.B., Fisk Z., Maple M.B. Possible Observation of the Coexistence of Superconductivity and Long-range Magnetic Order in NdRh4B4 // Solid State Commun. 1979. V. 31. No. 3. P. 139–144. https://doi.org/10.1016/0038-1098(79)90422-8
  9. Kumagai K., Ooyama T., Nakajima H., Shimotomai M. Superconducting and Magnetic Properties of CeRh4B4 and PrRh4B4 // Physica B+C. 1987. V. 148. P. 133–136. https://doi.org/10.1016/0378-4363(87)90176-8
  10. Kurata K., Muranaka T. Superconducting Properties of Pt-type and Bct-type YRh4B4 // Supercond. Sci. Technol. 2023. V. 36. No. 8. P. 085005. https://doi.org/10.1088/1361-6668/acd7ac
  11. Burkhanov G.S., Lachenkov S.A., Khlybov E.P. Anomalous Rise of the Upper Critical Field Upon Magnetic Ordering of the DyRh4B4 superconductor // Dokl. Phys. 2009. V. 54. No. 6. P. 265–268. https://doi.org/10.1134/S1028335809060032
  12. Köhler A., Behr G., Fuchs G., Nenkov K., Gupta L.C. Si-induced Superconductivity and Structural Transformations in DyRh4B4 // J. Alloys Compd. 2009. V. 482. No. 1–2. P. 5–9. https://doi.org/10.1016/j.jallcom.2009.04.040
  13. Vandenberg J., Matthias B. Clustering Hypothesis of Some High-Temperature Superconductors // Science. 1977. V. 198. P. 194–196. https://doi.org/10.1126/science.198.4313.194
  14. Буздин А.И., Булаевский Л.Н., Кулич М.Л., Панюков С.В. Магнитные сверхпроводники // УФН. 1984. Т. 144. Вып. 4. С. 597–641. https://doi.org/10.3367/UFNr.0144.198412b.0597
  15. Usman M., Zhou X., Malliakas C.D., Welp U., Kwok W.K., Chung D.Y., Kanatzidis M.G. Probing Phosphorus Solubility and Its Effect on Critical Temperature (Tc) in the Helical Superconducting Magnet RbEuFe4As4xPx // Chem. Mater. 2023. V. 35. No. 20. P. 8494–8501. https://doi.org/10.1021/acs.chemmater.3c01310
  16. Prando G., Torsello D., Sanna S., Graf M.J., Pyon S., Tamegai T., Carretta P., Ghigo G. Complex Vortex-Antivortex Dynamics in the Magnetic Superconductor EuFe2(As0.7P0.3)2 // Phys. Rev. B. 2022. V. 105. No. 22. P. 224504. https://doi.org/10.1103
  17. Mazumdar C., Gupta L. C. Discovery of Superconducting Quaternary Y–Ni–B–C System, Tc∼ 12 K, and a Brief Review of Superconducting and Magnetic Properties of RNi2B2C // Supercond. Sci. Technol. 2022. V. 35. No. 9. P. 094001. https://doi.org/10.1088/1361-6668/ac7dcc
  18. Кудреватых Н.В., Волегов А.С. Магнетизм редкоземельных металлов и их интерметаллических соединений. Екатеринбург: Изд-во Уральского ун-та, 2015. С. 198.
  19. Matthias B.T., Suhl H., Corenzwit E. Spin Exchange in Superconductors // Phys. Rev. Lett. 1958. V. 1. No. 3. P. 92–94. https://doi.org/10.1103/PhysRevLett.1.92
  20. Алексеевский Н.Е., Гарифуллин И.А., Кочелаев Б.И., Харахашьян Э.Г. Об упорядочении магнитной примеси в сверхпроводнике // Письма в ЖЭТФ. 1976. Т. 24. В. 10. С. 540–543.
  21. Johnston D.C. Nonmagnetic Contributions to the Variation of Tc with RE in RE(Rh,Ru)4B4 Compounds // Physica B+C. 1981. V. 108. Iss. 1–3. P. 755–756. https://doi.org/10.1016/0378-4363(81)90682-3
  22. Девятых Г.Г., Бурханов Г.С. Высокочистые тугоплавкие и редкие металлы. М.: Наука, 1993. С. 223.
  23. Бурханов Г.С., Лаченков С.А., Власенко В.А., Хлыбов Е.П., Гаврилкин С.Ю. Особенности магнитных свойств и критических токов сверхпроводящих боридов родия YRh4B4 и HoRh3.8Ru0.2B4 // Неорганич. материалы. 2021. Т. 57. № 7. C. 720–726. https://doi.org/10.31857/S0002337X21070022
  24. Лаченков С.А., Власенко В.А., Цветков А.Ю., Дементьев В.А. Магнитные свойства и критические свойства сверхпроводников Dy0.8Er0.2Rh3.8Ru0.2B4 и Dy0.6Er0.4Rh3.8Ru0.2B4 // Неорганич. материалы. 2023. Т. 59. № 1. C. 39–45. https://doi.org/10.31857/S0002337X2301013X
  25. Бурханов Г.С., Лаченков С.А., Хлыбов Е.П. Анализ взаимосвязи магнитной и сверхпроводящей подсистем соединений RE(Rh1  xRux)4B4 на примере DyRh3,8Ru0,2B4 и HoRh3.8Ru0.2B4 // ДАН. 2015. Т. 460. № 4. С. 398–402. https://doi.org/10.7868/S0869565215040088
  26. Бурханов Г.С., Лаченков С.А., Хлыбов Е.П. Влияние магнитной подсистемы на усиление сверхпроводимости в тройных боридах родия // ДАН. 2011. Т. 438. № 5. С. 619–622.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. RERh4B4 is a primitive tetragonal structure of the CeCo4B4 type (a); RERh4B4 is a body-centered tetragonal structure of the LuRu4B4 type compound (b).

Download (1MB)
3. Fig. 2. Dependence of the critical temperature (Tc) of lanthanum alloys containing ~ 1 at.% of impurities of various RE on the value of S(S+1) of the RE ion according to the data of the authors of [19].

Download (348KB)
4. Fig. 3. Dependence of the magnetic moment M(T) of the GdRh3.8Ru0.2B4 compound in FC and ZFC modes in fields of 20, 100, 1000 Oe. The inset shows data on the HoRh3.8Ru0.2B4 compound [23].

Download (622KB)
5. Fig. 4. Temperature dependences of the specific electrical resistance of the GdRh3.8Ru0.2B4 sample in fields up to 1000 Oe. The inset shows data in the temperature range of 2–25 K.

Download (442KB)
6. Fig. 5. Dependence of the inverse susceptibility (1/χv) on temperature for GdRh3.8Ru0.2B4.

Download (446KB)
7. Fig. 6. Dependences of the magnetic moment on the applied external magnetic field M(H) for GdRh3.8Ru0.2B4: (a) at T = 2, 4, 10, 20, 40 K and (b) T = 80, 90, 100, 120 K.

Download (905KB)
8. Fig. 7. Dependence of Tc for a series of rhodium borides RERh3.8Ru0.2B4 (RE = Y, Er, Ho, Dy, Gd) with the LuRu4B4 type structure on the de Gennes factor — (g–1)2J(J+1) (a) and S(S+1) of the RE ion (b).

Download (696KB)