Superconducting and magnetic properties changes of complex rhodium borides RERh3.8Ru0.2B4 in the series of RE = (Gd, Dy, Ho, Er, Y)
- Authors: Lachenkov S.A.1, Vlasenko V.A.2, Tsvetkov A.Y.2, Kulikova L.F.3
-
Affiliations:
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
- P.N. Lebedev Physical Institute, Russian Academy of Sciences
- Institute for High Pressure Physics, Russian Academy of Sciences
- Issue: Vol 126, No 4 (2025)
- Pages: 430-439
- Section: ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ СВОЙСТВА
- URL: https://rjonco.com/0015-3230/article/view/688434
- DOI: https://doi.org/10.31857/S0015323025040039
- EDN: https://elibrary.ru/JMISBW
- ID: 688434
Cite item
Abstract
Magnetic properties and superconducting characteristics of borides RERh3.8Ru0.2B4 with LuRu4B4 type structure (RE = Y, Er, Ho, Dy), as well as compounds GdRh3.8Ru0.2B4 have been investigated in order to establish formation patterns of superconducting and magnetic subsystems in presented compounds, and their mutual influence. The analysis showed that there is no direct relationship between the critical temperature (Tc) of RERh3.8Ru0.2B4 compounds and their magnetic subsystem. However, a monotonic decrease in the RERh3.8Ru0.2B4 borides critical temperature at successive replacement of RE with Y by Er, Ho, Dy has been established. In this case, the Tc depends linearly on S(S+1), where S is the spin quantum number of the RE+3 ion. Such critical temperature behavior can be associated with the exchange interaction of the conduction electrons spins with the magnetic moments of the RE+3 ions, which increases as the spin quantum number S of the ion increases. The absence of superconductivity in the GdRh3.8Ru0.2B4 compound is also within the established pattern.
Full Text

About the authors
S. A. Lachenkov
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
Email: vlasenkovlad@gmail.com
Russian Federation, Moscow
V. A. Vlasenko
P.N. Lebedev Physical Institute, Russian Academy of Sciences
Author for correspondence.
Email: vlasenkovlad@gmail.com
Russian Federation, Moscow
A. Yu. Tsvetkov
P.N. Lebedev Physical Institute, Russian Academy of Sciences
Email: vlasenkovlad@gmail.com
Russian Federation, Moscow
L. F. Kulikova
Institute for High Pressure Physics, Russian Academy of Sciences
Email: vlasenkovlad@gmail.com
Russian Federation, Troitsk, Moscow, 108840
References
- Maple M.B., Fischer O. Superconductivity in Ternary Compounds II. Superconductivity and Magnetism. N.Y.: Springer-Verlag, 1982. P. 308.
- Wolowiec C.T., White B.D., Maple M.B. Conventional Magnetic Superconductors // Physica C: Superconductivity Appl. 2015. V. 514. P. 113–129. https://doi.org/10.1016/j.physc.2015.02.050
- Johnston D.C. Superconductivity in a New Ternary Structure Class of Boride Compounds // Solid State Commun. 1977. V. 24. No. 10. P. 699–702. https://doi.org/10.1016/0038-1098(77)90078-3
- Yvon K., Johnston D.C. Orthorhombic –a New Polytype of Stoichiometry // Acta Crystal. Sect. B: Struct. Sci. 1982. V. 38. No. 1. P. 247–250. https://doi.org/10.1107/S0567740882002490
- Matthias B.T., Corenzwit E., Vandenberg J.M., Barz H.E. High Superconducting Transition Temperatures of New Rare Earth Ternary Borides // Proc. Natl. Acad. Sci. USA. 1977. V. 74. No. 4. P. 1334–1335. https://doi.org/10.1073/pnas.74.4.1334
- Jatmika J., Maruyama H., Rahman M.S., Sakai A., Nakatsuji S., Iyo A., Ebihara T. Superconducting Properties of the Ternary Boride // Supercond. Sci. Technol. 2020. V. 33. No. 12. P. 125006. https://doi.org/10.1088/1361-6668/abbb18
- Majkrzak C.F., Cox D.E., Shirane G., Mook H.A., Hamaker H.C., MacKay H.B., Fisk Z., Maple M.B. Neutron-diffraction Study of the Magnetic Ordering in Superconducting // Phys. Rev. B: Condens. Matter. 1982. V. 26. No. 1. P. 245–249. https://doi.org/10.1103/PhysRevB.26.245
- Hamaker H.C., Woolf L.D., MacKay H.B., Fisk Z., Maple M.B. Possible Observation of the Coexistence of Superconductivity and Long-range Magnetic Order in NdRh4B4 // Solid State Commun. 1979. V. 31. No. 3. P. 139–144. https://doi.org/10.1016/0038-1098(79)90422-8
- Kumagai K., Ooyama T., Nakajima H., Shimotomai M. Superconducting and Magnetic Properties of and // Physica B+C. 1987. V. 148. P. 133–136. https://doi.org/10.1016/0378-4363(87)90176-8
- Kurata K., Muranaka T. Superconducting Properties of Pt-type and Bct-type // Supercond. Sci. Technol. 2023. V. 36. No. 8. P. 085005. https://doi.org/10.1088/1361-6668/acd7ac
- Burkhanov G.S., Lachenkov S.A., Khlybov E.P. Anomalous Rise of the Upper Critical Field Upon Magnetic Ordering of the superconductor // Dokl. Phys. 2009. V. 54. No. 6. P. 265–268. https://doi.org/10.1134/S1028335809060032
- Köhler A., Behr G., Fuchs G., Nenkov K., Gupta L.C. Si-induced Superconductivity and Structural Transformations in // J. Alloys Compd. 2009. V. 482. No. 1–2. P. 5–9. https://doi.org/10.1016/j.jallcom.2009.04.040
- Vandenberg J., Matthias B. Clustering Hypothesis of Some High-Temperature Superconductors // Science. 1977. V. 198. P. 194–196. https://doi.org/10.1126/science.198.4313.194
- Буздин А.И., Булаевский Л.Н., Кулич М.Л., Панюков С.В. Магнитные сверхпроводники // УФН. 1984. Т. 144. Вып. 4. С. 597–641. https://doi.org/10.3367/UFNr.0144.198412b.0597
- Usman M., Zhou X., Malliakas C.D., Welp U., Kwok W.K., Chung D.Y., Kanatzidis M.G. Probing Phosphorus Solubility and Its Effect on Critical Temperature () in the Helical Superconducting Magnet // Chem. Mater. 2023. V. 35. No. 20. P. 8494–8501. https://doi.org/10.1021/acs.chemmater.3c01310
- Prando G., Torsello D., Sanna S., Graf M.J., Pyon S., Tamegai T., Carretta P., Ghigo G. Complex Vortex-Antivortex Dynamics in the Magnetic Superconductor // Phys. Rev. B. 2022. V. 105. No. 22. P. 224504. https://doi.org/10.1103
- Mazumdar C., Gupta L. C. Discovery of Superconducting Quaternary Y–Ni–B–C System, ∼ 12 K, and a Brief Review of Superconducting and Magnetic Properties of // Supercond. Sci. Technol. 2022. V. 35. No. 9. P. 094001. https://doi.org/10.1088/1361-6668/ac7dcc
- Кудреватых Н.В., Волегов А.С. Магнетизм редкоземельных металлов и их интерметаллических соединений. Екатеринбург: Изд-во Уральского ун-та, 2015. С. 198.
- Matthias B.T., Suhl H., Corenzwit E. Spin Exchange in Superconductors // Phys. Rev. Lett. 1958. V. 1. No. 3. P. 92–94. https://doi.org/10.1103/PhysRevLett.1.92
- Алексеевский Н.Е., Гарифуллин И.А., Кочелаев Б.И., Харахашьян Э.Г. Об упорядочении магнитной примеси в сверхпроводнике // Письма в ЖЭТФ. 1976. Т. 24. В. 10. С. 540–543.
- Johnston D.C. Nonmagnetic Contributions to the Variation of with RE in Compounds // Physica B+C. 1981. V. 108. Iss. 1–3. P. 755–756. https://doi.org/10.1016/0378-4363(81)90682-3
- Девятых Г.Г., Бурханов Г.С. Высокочистые тугоплавкие и редкие металлы. М.: Наука, 1993. С. 223.
- Бурханов Г.С., Лаченков С.А., Власенко В.А., Хлыбов Е.П., Гаврилкин С.Ю. Особенности магнитных свойств и критических токов сверхпроводящих боридов родия и // Неорганич. материалы. 2021. Т. 57. № 7. C. 720–726. https://doi.org/10.31857/S0002337X21070022
- Лаченков С.А., Власенко В.А., Цветков А.Ю., Дементьев В.А. Магнитные свойства и критические свойства сверхпроводников и // Неорганич. материалы. 2023. Т. 59. № 1. C. 39–45. https://doi.org/10.31857/S0002337X2301013X
- Бурханов Г.С., Лаченков С.А., Хлыбов Е.П. Анализ взаимосвязи магнитной и сверхпроводящей подсистем соединений на примере и // ДАН. 2015. Т. 460. № 4. С. 398–402. https://doi.org/10.7868/S0869565215040088
- Бурханов Г.С., Лаченков С.А., Хлыбов Е.П. Влияние магнитной подсистемы на усиление сверхпроводимости в тройных боридах родия // ДАН. 2011. Т. 438. № 5. С. 619–622.
Supplementary files
