Cytogeography of the polyploid complex Bassia prostratА s. l. (Chenopodiaceae) based on genome size analysis and PCR-RFLP cpDNA

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The cytogeography of the polyploid complex Bassia prostrata s. l. was studied by flow cytometry (FCM) on material from 39 populations in Armenia, Kazakhstan and Russia. Based on the determination of the DNA content in the nuclei (2C-value), three cytotypes were identified: diploid (2n = 18), tetraploid (2n = 36) and hexaploid (2n = 54). Verification of the ploidy level determined by DNA content was carried out by parallel direct counting of the chromosome number. Most of the studied populations are represented by a single cytotype; in three populations mixed ploidy is noted, when tetraploids or hexaploids are found along with diploids. The genetic isolation of chloroplast DNA of diploid and polyploid cytotypes was revealed. Presumable variants of the evolutionary relationship of cytotypes are shown based on cpDNA restriction spectra.

Full Text

Restricted Access

About the authors

T. V. Pankova

Central Siberian Botanical Garden, Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: ankova_tv@mail.ru
Russian Federation, Novosibirsk, 630090

M. N. Lomonosova

Central Siberian Botanical Garden, Siberian Branch of the Russian Academy of Sciences

Email: ankova_tv@mail.ru
Russian Federation, Novosibirsk, 630090

O. V. Vaulin

Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences

Email: ankova_tv@mail.ru
Russian Federation, Novosibirsk, 630090

A. Yu. Korolyuk

Central Siberian Botanical Garden, Siberian Branch of the Russian Academy of Sciences

Email: ankova_tv@mail.ru
Russian Federation, Novosibirsk, 630090

E. A. Korolyuk

Central Siberian Botanical Garden, Siberian Branch of the Russian Academy of Sciences

Email: ankova_tv@mail.ru
Russian Federation, Novosibirsk, 630090

D. N. Shaulo

Central Siberian Botanical Garden, Siberian Branch of the Russian Academy of Sciences

Email: ankova_tv@mail.ru
Russian Federation, Novosibirsk, 630090

B. Osmonali

Institute of Botany and Phytointroduction

Email: ankova_tv@mail.ru
Kazakhstan, Almaty, 050040

References

  1. Otto S.P. The evolutionary consequences of polyploidy // Cell. 2007. V. 131. I. 3. Р. 452–462. https://doi.org/10.1016/j.cell.2007.10.022
  2. Soltis D.E., Soltis P.S., Schemske D.W. et al. Autopolyploidy in angiosperms: Have we grossly underestimated the number of species? // Taxon. 2007. V. 56. I. 1. Р. 13–30.
  3. Jiao Y., Wickett N.J., Ayyampalayam S. et al. Ancestral polyploidy in seed plants and angiosperms // Nature. 2011. V. 473. Р. 97–100. https://doi.org/10.1038/nature09916
  4. Löve A. Taxonomical evaluation of polyploids // Caryologia. 1951. V. 3. I.3. Р. 263–284. https://doi.org/10.1080/00087114.1951.10797163
  5. Lewis W.H. Cytocatalytic evolution in plants // Bot. Rev. 1967. V. 33 I. 2. Р. 105–115.
  6. Grant V. Plant Speciation. N. Y.: Columbia Univ. Press, 1971. 432 p.
  7. Шнеер В.С., Пунина Е.О., Родионов А.В. Внутривидовые различия в плоидности у покрытосеменных и их таксономическая интерпретация // Бот. жур. 2018. № 5. С. 555–585. https://doi.org/10.1134/S0006813618050010
  8. Бегучев П.П. Материалы к изучению ареала Kochia prostrata (L.) Schrad // Изень – Kochia prostrata (L.) Schrad.Ташкент: Фан, 1971. С. 10–16.
  9. Moquin-Tandon C.H.B.A. Chenopodearum monographica enumeratio. Parisiis: P.-J. Loss., 1840. P. 182. https://doi.org/10.5962/bhl.title.15484
  10. Bongard C., Meyer A. K. prostrata var. villosissima Bong. et C.A. Mey // Verz. Saisang-nor Pfl. St. Petersbourg: Mem. Acad. Sci., 1841. 67 p.
  11. Ильин М. Camphorosmeae Moq. // Флора СССР. Т. 6. M.:Л.: Изд-во Акад. наук, 1936. С. 116–134.
  12. Zhu G., Mosyakin S.L., Clemants S.E. Chenopodiaceae Vent. // Flora of China. V. 5. Beijing-St. Louis: Sci. Press, Missouri Botan. Garden Press, 2003. Р. 351–414.
  13. Пратов У. Вопросы внутривидовой систематики Kochia prostrata (L.) Schrad. // Изень. Ташкент: Фан, 1971. С. 3–5.
  14. Черепанов С.К. Сосудистые растения России и сопредельных государств (в пределах бывшего СССР). СПб.: Мир и семья, 1995. 990 с.
  15. Сергиевская Л.П. Kochia Roth Кохия // Флора Западной Сибири. 1964. Т. 12. Ч. 2. Томск: Изд-во Томского у-та, С. 3260–3261.
  16. Kadereit G., Freitag H. Molecular phylogeny of Camphorosmeae (Camphorosmoideae, Chenopodiaceae): Implications for biogeography, evolution of C4-photosynthesis and taxonomy // Taxon. 2011. V. 60. I. 1. P. 51–78. https://doi.org/10.1002/tax.601006open_in_new
  17. Ломоносова М.Н., Красников А.А. Числа хромосом некоторых представителей семейства Chenopodiaceae // Бот. жур. 1993. Т. 78. № 3. С. 158–159.
  18. Lomonosova M.N. Contribution to chromosome study in some vascular plants from Russia: Chenopodiaceae, Amaranthaceae, Brassicaceae // Bot. Pacifica. 2018. V. 7. № 2. Р. 151–156. https://doi.org/10.17581/bp.2018.07201
  19. Lomonosova M.N., An’kova T.V., Voronkova M.S. et al. Ploidy level in the representatives of Chenopodiaceae from North Asia as revealed by genome size and chromosome numbers // Turczaninowia. 2020. V. 23. № 1. Р. 24–31. https://doi.org/10.258/turczaninowia23.1.3
  20. Степанов Н.В. Хромосомные числа некоторых таксонов высших растений флоры Красноярского края // Бот. жур. 1994. Т. 79. № 2. С. 135–139.
  21. Hanelt P. IOPB chromosome number reports XLII // Taxon. 1973. V. 22. I. 5–6. P. 647–654.
  22. Захарьева О.И., Сосков Ю.В. Хромосомные числа некоторых пустынных кормовых растений // Бюлл. ВИР. 1981. Вып. 108. С. 57–60.
  23. Ghaffari S.M., Balaei Z., Chatrenoor T., Akhani H. Cytology of SW Asian Chenopodiaceae: New data from Iran and a review of previous records and correlations with life forms and C4 photosynthesis // Plant Syst. Evol. 2015. V. 301. P. 501–521. https://doi.org/10.1007/s00606-014-1109-6
  24. Lomonosova M.N., Shaulo D.N., An’kova T.V. et al. IAPT/IOPB chromosome data // Taxon. 2014. V. 63. I. 6. P. E.16–E18. https://doi.org/10.12705/636.37
  25. Khatoon S. Polyploidy in the flora of Pakistan: An analytical study. PhD. Thesis. Karachi: Univ. Karachi, 1991.
  26. Šmarda P., Knápek O., Březinová A. et al. Genome sizes and genomic guanine+cytosine (GC) contents of the Czech vascular flora with new estimates for 1700 species // Preslia. 2019. V. 91. P. 117–142. https://doi.org/10.23855/preslia.2019.117
  27. Смирнов Ю.А. Ускоренный метод исследования соматических хромосом плодовых // Цитология. 1968. Т. 10. № 12. С. 1601–1602.
  28. Pfosser M., Amon A., Lelley T., Heberle-Bors E. Evaluation of sensitivity of flow cytometry in detecting aneuploidy in wheat using disomic and ditelosomic wheat-rye addition lines // Cytometry. 1995. V. 21. I. 4. P. 387–393. https://doi.org/10.1002/cyto.990210412
  29. Doležel J., Greilhuber J., Lucretti S. et al. Plant genome size estimation by flow cytometry: Inter-laboratory comparision // Ann. Botany. 1998. V. 82. Supp. A. P. 17–26. https://doi.org/10.1006/anbo.1998.0730
  30. Doležel J., Bartoš J. Plant DNA flow cytometry and estimation of nuclear genome size // Ann. of Botany. 2005. V. 95. I. 1. P. 99–110. https://doi.org/10.1093/aob/mci005
  31. Doležel J., Sgorbati S., Lucretti S. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants // Physiol. Plantarum. 1992. V. 85. P. 625–631.
  32. Obermayer R., Leitch I.J., Hanson L., Bennett M.D. Nuclear DNA C-values in 30 species double the familial representation in pteridophytes // Ann. Botany. 2002. V. 90. P. 209–217. https://doi.org/10.1093/aob/mcf167
  33. Greilhuber J., Dolezel J., Lysàk M., Bennett M.D. The origin, evolution, and proposed stabilisation of the terms “genome size” and, C-value` to describe nuclear DNA contents // Ann. Botany. 2005. V. 95. P. 255–260. https://doi.org/10.1093/aob/mci019
  34. Kosterin O.E., Bogdanova V.S. Relationship of wild and cultivated forms of Pisum L. as inferred from an analysis of three markers, of plastid, mitochondrial and nuclear genomes // Genet. Res. Crop Evol. 2008. V. 55. P. 735–755. https://doi.org/10.1007/s10722-007-9281-y
  35. San Millán R.M., Martínez-Ballesteros I., Rementeria A. et al. Online exercise for the design and simulation of PCR and PCR-RFLP experiments // BMC Res. Notes. 2013. V. 6. https://doi.org/10.1186/1756-0500-6-513
  36. Рубцов М.И., Сагимбаев Р.Р., Шаханов Е.Ш. и др. Естественные полиплоиды изеня и терескена серого как исходный материал для селекции // Докл. ВАСХНИЛ. 1989. № 4. С. 15–17.
  37. Бутник А.А. Анатомические особенности строения листа различноопушенных форм Kochia prostrata (L.) Schrad. // Материалы по физиологии и экологии растений Средней Азии. Ташкент, 1966. С. 59–69.
  38. Шаханов Е.Ш. Полиплоидия и отдаленная гибридизация аридных кормовых культур: Автореф. дис. … докт. биол. наук. М: МСХА им. Тимирязева, 1991. 32 с.
  39. Hao G.Y., Lucero M.E., Sanderson S.C. et al. Polyploidy enhances the occupation of heterogeneous environments through hydraulic related trade-offs in Atriplex canescens (Chenopodiaceae) // New Phytol. 2013. V. 197. I. 3. Р. 970–978. https://doi.org/10.1111/nph.12051
  40. Levin D.A. The timetable for allopolyploidy in flowering plants // Ann. Botany. 2013. V. 112. Р. 1201–1208. https://doi.org/10.1093/aob/mct19 4
  41. Čentner M., Kúr P., Kolár F., Suda J. Climatic conditions and human activitis shape diploid-tetraploid coexistance of different spatial scales in the common weed Tripleurospermum inodorum (Asteraceae) // J. Biogeography. 2019. V. 46. Р. 1355–1366. https://doi.org/10.1111/jbi.13629
  42. Дзюбенко Н.И., Сосков Ю.Д. Генетические ресурсы кохии простертой – Kochia prostrata (L.) Schrad. СПб:ВИР, 2014. 336 с.
  43. Лиджиева Н.Ц., Джалсанова С.С. Цитогенетическое изучение Kochia prostrata (L.) Schrad. // XI съезд Русс. бот. общества. 2003. Т. 1. С. 306–307.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Histograms of the fluorescence intensity of B. prostrata samples of different ploidy. On the abscissa axis are the values of relative fluorescence; on the ordinate axis are the number of nuclei. 1, 2, are the peaks of fluorescence of Bassia prostratea, Pt is the peak of fluorescence of the Petroselinum crispum standard (2C = 4.50 pg), PS is the peak of fluorescence of the Pisum sativum standard (2C = 9.09 pg); a is population No. 7 (2x); b – population No. 17 (4x); c – population No. 38 (6x); d – population No. 26 - mixed (6x); e – population No. 26-mixed (2x); e – population No. 34-mixed (4x) . The index is the ratio of the values of the genome size (2C) of the sample and the standard.

Download (57KB)
3. Fig. 2. Average values of genome size (GS, 2C) for the studied populations of B. prostrata. The unpainted segments correspond to mixed populations, the population numbers correspond to Table 1.

Download (2KB)
4. Fig. 3. Box-plot of the genome size of three cytotypes of B. prostrata (according to Kruskal–Wallis). The boundaries of the rectangle are defined by the 1st and 3rd quartiles (25th and 75th percentiles), the horizontal segment inside the rectangle is the median, the vertical segment corresponds to the minimum and maximum values.

Download (1KB)
5. Fig. 4. Electrophoregrams of restriction of chloroplast DNA sites for Bassia prostrata s. l. samples of various ploidy. 2x are diploids (population 14), 4x are tetraploids (population 18), 6x are hexaploids (population 38). The track on the right is a marker of molecular weights of 100 mon + 1.5 + 3 tn.

Download (35KB)
6. Fig. 5. Variants of the evolutionary relationship between ploidy and restriction spectra of cpDNA sites.

Download (6KB)
7. Fig. 6. Geographical distribution of B. prostrata cytotypes according to genome size data. Gray icons are our data, white ones are based on literary sources; the level of ploidy: circle – 2x, triangle – 4x, rhombus – 6x, star – mixoploid population.

Download (36KB)

Copyright (c) 2024 Russian Academy of Sciences