Exosomal miRNA-146a and miRNA-424 as possible predictors of immune checkpoint inhibitors therapy response in clear cell renal cell carcinoma

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Clear cell renal cell carcinoma (ccRCC) is a malignant kidney tumor with a poor prognosis and difficult to treat. Despite significant advances in the treatment of ccRCC, immune checkpoint in-hibitors (ICI) still have limited therapeutic efficacy. A growing body of work has demonstrated that exosomal microRNAs are key modulators of tumor signaling and determinants of the tumor microenvironment. Disruption of microRNA regulation may affect ccRCC immunogenicity and response to ICI therapy, making them attractive for use as prognostic molecular genetic bi-omarkers. We evaluated exosomal miRNAs (miRNA-424,-146a,-503, -144) expression levels before and after ICI therapy in plasma samples obtained from 42 ccRCC patients. Expression analysis was performed by real-time PCR method. The results showed that the expression levels of miRNA-424 and miRNA-146a were upregulated after ICI therapy treatment (miRNA-424 = Mean ± SEM 1.202 ± 0.15 and miRNA-146a = 12.22 ± 1.45) compared expression levels before therapy (miRNA-424=Mean±SEM 0.63 ± 0.17; p-value = 0.03 and miRNA-146a = 7.03 ± 0.90; p-value = 0.006). miRNA-424 and miRNA-146a can be used to create a panel of molecular markers for evaluating the effectiveness of immune checkpoint inhibitors therapy. Even though this is very preliminary and requires further studying on a larger sample, it further increases the interest in using microRNAs, as additional ICI therapeutic markers capable of modulating immune tolerance.

Full Text

Restricted Access

About the authors

D. D. Asadullina

Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences; Federal State Budgetary Educational Institution of Higher Education “Bashkir State Medical University” of the Ministry of Health of the Russian Federation

Author for correspondence.
Email: dilara.asadullina@yandex.ru
Russian Federation, Ufa, 450054; Ufa, 450008

I. R. Gilyazova

Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences; Federal State Budgetary Educational Institution of Higher Education “Bashkir State Medical University” of the Ministry of Health of the Russian Federation

Email: gilyasova_irina@mail.ru
Russian Federation, Ufa, 450054; Ufa, 450008

E. A. Ivanova

Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences

Email: dilara.asadullina@yandex.ru
Russian Federation, Ufa, 450054

S. M. Izmailova

Federal State Budgetary Educational Institution of Higher Education “Bashkir State Medical University” of the Ministry of Health of the Russian Federation

Email: dilara.asadullina@yandex.ru
Russian Federation, Ufa, 450008

G. R. Gilyazova

Federal State Budgetary Educational Institution of Higher Education “Bashkir State Medical University” of the Ministry of Health of the Russian Federation

Email: dilara.asadullina@yandex.ru
Russian Federation, Ufa, 450008

V. N. Pavlov

Federal State Budgetary Educational Institution of Higher Education “Bashkir State Medical University” of the Ministry of Health of the Russian Federation

Email: dilara.asadullina@yandex.ru
Russian Federation, Ufa, 450008

E. K. Khusnutdinova

Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences; Federal State Budgetary Educational Institution of Higher Education “Bashkir State Medical University” of the Ministry of Health of the Russian Federation

Email: dilara.asadullina@yandex.ru
Russian Federation, Ufa, 450054; Ufa, 450008

References

  1. Najberg M., Mansor M.H., Boury F. et al. Reversing the tumor target: establishment of a tumor trap // Front. Pharmacol. 2019. V. 10. https://doi.org/10.3389/fphar.2019.00887
  2. Jackson C.M., Choi J., Lim M. Mechanisms of immunotherapy resistance: Lessons from glioblastoma // Nat. Immunol. 2019. V. 20. № 9. P. 1100–1109. https://doi.org/10.1038/s41590-019-0433-y
  3. Gilyazova I.R., Asadullina D.D., Ivanova E.A. et al. Germline mutations as possible biomarkers of immune checkpoint inhibitor therapy efficacy in patients with renal cell carcinoma (mini review) // Res. Results in Biomed. 2022. V. 8. № 2. P. 164–179. https://doi.org/10.18413/2658-6533-2022-8-2-0-3
  4. Vishnoi A., Rani S. miRNA biogenesis and regulation of diseases: An updated overview // Methods Mol. Biol. 2023. P. 1–12. https://doi.org/10.1007/978-1-0716-2823-2_1
  5. Hill M., Tran N. miRNA interplay: Mechanisms and consequences in cancer // Dis. Model Mech. 2021. V. 14. № 4. https://doi.org/10.1242/dmm.047662
  6. Khan A., Ahmed E.I., Elareer N.R. et al. Role of mi RNA-regulated cancer stem cells in the pathogenesis of human malignancies // Cells. 2019. V. 8. № 8. https://doi.org/10.3390/cells8080840
  7. Hussen B.M., Hidayat H.J., Salihi A. et al. MicroRNA: A signature for cancer progression // Biomedicine & Pharmacotherapy. 2021. V. 138. https://doi.org/10.1016/j.biopha.2021.111528
  8. He B., Zhao Zh.,Cai Q. et al. miRNA-based biomarkers, therapies, and resistance in cancer // Int. J. Biol. Sci. 2020. V. 16. № 14. P. 2628–2647. https://doi.org/10.7150/ijbs.47203
  9. Tao M., Zheng M., Xu Y. et al. CircRNAs and their regulatory roles in cancers // Mol. Medicine. 2021. V. 27. № 1. P. 94. https://doi.org/10.1186/s10020-021-00359-3
  10. Ivanova E., Asadullina D., Gilyazova G. et al. Exosomal MicroRNA levels associated with immune checkpoint inhibitor therapy in clear cell renal cell carcinoma // Biomedicines. 2023. V. 11. № 3. https://doi.org/10.3390/biomedicines11030801
  11. Wang Z., Han J., Cui Y. et al. Circulating microRNA-21 as noninvasive predictive biomarker for response in cancer immunotherapy // Med. Hypotheses. 2013. V. 81. № 1. P. 41–43. https://doi.org/10.1016/j.mehy.2013.03.001
  12. Chen L., Gibbons D.L., Goswami S. et al. Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression // Nat. Commun. 2014. V. 5. № 1. https://doi.org/0.1038/ncomms6241
  13. Cortez M.A., Ivan C.,Valdecanas D. et al. PDL1 regulation by p53 via miR-34 // J. Nat. Cancer Institute. 2016. V. 108. № 1. https://doi.org/10.1093/jnci/djv303
  14. Rodriguez-Barrueco R., Nekritz E.A., Bertucci F. et al. miR-424(322)/503 is a breast cancer tumor suppressor whose loss promotes resistance to chemotherapy // Genes Dev. 2017. V. 31. № 6. P. 553–566. https://doi.org/10.1101/gad.292318.116
  15. Lu L., Wu M., Lu Y. et al. MicroRNA-424 regulates cisplatin resistance of gastric cancer by targeting SMURF1 based on GEO database and primary validation in human gastric cancer tissues // Onco. Targets Ther. 2019. V.12. P. 7623–7636. https://doi.org/10.2147/OTT.S208275
  16. Li Y., Liu H., Cui Y. et al. miR-424-3p contributes to the malignant progression and chemoresistance of gastric cancer // Onco. Targets Ther. 2020. V. 13. P. 12201–12211. https://doi.org/10.2147/OTT.S280717
  17. Zhang D., Shi Z., Li M. et al. Hypoxia-induced miR-424 decreases tumor sensitivity to chemotherapy by inhibiting apoptosis // Cell Death Dis. 2014. V. 5. № 6. P. e1301–e1301. https://doi.org/10.1038/cddis.2014.240
  18. Bieg D., Sypniewski D., Nowak E. et al. MiR-424-3p suppresses galectin-3 expression and sensitizes ovarian cancer cells to cisplatin // Arch. Gynecol. Obstet. 2019. V. 299. № 4. P. 1077–1087. https://doi.org/10.1007/s00404-018-4999-7
  19. Holmgren G., Synnergren J., Andersson Ch. X. et al. MicroRNAs as potential biomarkers for doxorubicin-induced cardiotoxicity // Toxicology in Vitro. 2016. V. 34. P. 26–34. https://doi.org/10.1016/j.tiv.2016.03.009
  20. Li R., Ruan Q., Zheng J. et al. LINC01116 promotes doxorubicin resistance in osteosarcoma by epigenetically silencing miR-424-5p and inducing epithelial-mesenchymal transition // Front. Pharmacol. 2021. V. 12. https://doi.org/10.3389/fphar.2021.632206
  21. Ralla B., Busch J., Flörcken A. et al. miR-9-5p in nephrectomy specimens is a potential predictor of primary resistance to first-line treatment with tyrosine kinase inhibitors in patients with metastatic renal cell carcinoma // Cancers (Basel). 2018. V. 10. № 9. https://doi.org/10.3390/cancers10090321
  22. Gámez-Pozo A., Antón-Aparicio L.M., Bayona Ch. et al. MicroRNA expression profiling of peripheral blood samples predicts resistance to first-line sunitinib in advanced renal cell carcinoma patients // Neoplasia. 2012. V. 14. № 12. P. 1144–1150. https://doi.org/10.1593/neo.12734
  23. Kovacova J., Juracek J., Poprach Al. et al. MiR-376b-3p is associated with long-term response to sunitinib in metastatic renal cell carcinoma patients // Cancer Genomics–Proteomics. 2019. V. 16. № 5. P. 353–359. https://doi.org/10.21873/cgp.20140
  24. He J., He J., Min L. et al. Extracellular vesicles transmitted miR‐31‐5p promotes sorafenib resistance by targeting MLH1 in renal cell carcinoma // Int. J. Cancer. 2020. V. 146. № 4. P. 1052–1063. https://doi.org/10.1002/ijc.32543
  25. Liu Y., Xie Q., Ma Y. et al. Nanobubbles containing PD-L1 Ab and miR-424 mediated PD-L1 blockade, and its expression inhibition to enable and potentiate hepatocellular carcinoma immunotherapy in mice // Int. J. Pharm. 2022. V. 629. https://doi.org/10.1016/j.ijpharm.2022.122352
  26. Mastroianni J., Stickel N., Andrlova H. et al. miR-146a controls immune response in the melanoma microenvironment // Cancer Res. 2019. V. 79. № 1. P. 183–195. https://doi.org/10.1158/0008-5472.CAN-18-1397
  27. Marschner D., Falk M., Javorniczky N.R. et al. MicroRNA-146a regulates immune-related adverse events caused by immune checkpoint inhibitors // JCI Insight. 2020. V. 5. № 6. https://doi.org/10.1172/jci.insight.132334
  28. Bhaumik D., Scott G.K., Schokrpur S. et al. Expression of microRNA-146 suppresses NF-κB activity with reduction of metastatic potential in breast cancer cells // Oncogene. 2008. V. 27. № 42. P. 5643–5647. https://doi.org/10.1038/onc.2008.171
  29. Wang G., Gu Y., Xu N. et al. Decreased expression of miR-150, miR146a and miR424 in type 1 diabetic patients: Association with ongoing islet autoimmunity // Biochem. Biophys. Res. Commun. 2018. V. 498. № 3. P. 382–387. https://doi.org/10.1016/j.bbrc.2017.06.196
  30. Peng X.-X.,Yu R., Wu X.et al. Correlation of plasma exosomal microRNAs with the efficacy of immunotherapy in EGFR/ALK wild-type advanced non-small cell lung cancer // J. Immunother. Cancer. 2020. V. 8. № 1. https://doi.org/10.1136/jitc-2019-000376
  31. Halvorsen A.R., Sandhu V., Sprauten M. et al. Circulating microRNAs associated with prolonged overall survival in lung cancer patients treated with nivolumab // Acta. Oncol. (Madr). 2018. V. 57. № 9. P. 1225–1231. https://doi.org/10.1080/0284186X.2018.1465585
  32. Boeri M., Milione M., Proto Cl. et al. Circulating miRNAs and PD-L1 tumor expression are associated with survival in advanced NSCLC patients treated with immunotherapy: А prospective study // Clin. Cancer Research. 2019. V. 25 № 7. P. 2166–2173. https://doi.org/10.1158/1078-0432.CCR-18-1981
  33. Rajakumar T., Horos R., Jehn J. et al. A blood-based miRNA signature with prognostic value for overall survival in advanced stage non-small cell lung cancer treated with immunotherapy // NPJ Precis. Oncol. 2022. V. 6. № 1. P. 19. https://doi.org/10.1038/s41698-022-00262-y
  34. Pantano F., Zalfa Fr., Iuliani M. et al. Large-scale profiling of extracellular vesicles identified miR-625-5p as a novel biomarker of immunotherapy response in advanced non-small-cell lung cancer patients // Cancers (Basel). 2022. V. 14. № 10. https://doi.org/10.3390/cancers14102435

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Expression levels of exosomal microRNAs in patients with scPCC treated with ICTI. a – miRNA-424; b – miRNA-503; c – miRNA-146a; d – miRNA-144. The significance level of the p-value was calculated using the Wilcoxon criterion. bt – before therapy; at – after therapy.

Download (14KB)
3. Fig. 2. GO signaling pathway enrichment analysis and a diagram reflecting the results of the KEGG pathway enrichment analysis performed for microRNA-146a and microRNA-424 and their validated targets.

Download (42KB)
4. Fig. 3. Signaling pathway of PD-L1 expression and PD-1 control points, including validated target genes microRNA-146a and microRNA-424 (highlighted in red), according to the KEGG database.

Download (119KB)
5. Fig. 4. ROC analysis for predicting the response to ICTI therapy in scPCC based on the analysis of the expression of exosomal microRNA-424.

Download (13KB)

Copyright (c) 2024 Russian Academy of Sciences