Study of the Cattle Mitochondrial Genomes from Archaeological Finds on the Territory of Yaroslavl (XIII–XIV Centuries)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Evolutionary processes and selective breeding have developed diverse arrays of local livestock populations adapted to specific natural and climatic conditions. Increased selection pressure and concentration on a few high-yielding breeds have led to the erosion of genetic resources worldwide. One effective approach to assessing genetic diversity is the study of mitochondrial DNA (mtDNA) polymorphism, which exhibits a high level of variability and is characterised by a lack of recombination, allowing the study of genetic relationships between breeds and the tracing of both ancient and relatively recent evolutionary events. The study of the evolution and demographic history of farm animal breeds is made possible by the involvement of historical and archaeological specimens in research. The aim of our work was to identify the most efficient way to investigate mitochondrial DNA extracted from archaeological samples, allowing the analysis of population genetic parameters. The study included samples dating from the late XIII–XIV centuries, discovered during excavations of the central part of the medieval Kremlin within the boundaries of modern Yaroslavl. The methods of full-genome sequencing and Sanger sequencing of mtDNA fragments were used to study the maternal variability of cattle bred in the forest zone of the Russian Plain. A dendrogram based on genetic distances of the complete mitochondrial sequence using the Neighbor-Joining method revealed clustering of archaeological samples in groups of modern Yaroslavl and Kholmogorsk cattle, which may indicate common ancestors of all three populations. A detailed examination of some regions of the mitogenome revealed that the archaeological samples were successfully genotyped with sequences that slightly overlapped with each other. Therefore, a system for genotyping the hypervariable region of the D-loop using Sanger sequencing of the target fragment was developed. The analysis of nucleotide and haplotypic diversity revealed minimal values of these parameters in the group of archaeological samples. The constructed median haplotype network allowed to attribute the archaeological samples to haplogroup T3, the most widespread in European cattle breeds. The analysis of the obtained data allows us to assume the origin of the studied archaeological specimens from individuals of the local group of cattle bred in the vicinity of medieval Yaroslavl in the XIII–XIV centuries.

Full Text

Restricted Access

About the authors

A. S. Abdelmanova

Ernst Federal Research Center for Animal Husbandry

Author for correspondence.
Email: abdelmanova@vij.ru
Russian Federation, Moscow oblast, 142132

M. S. Fornara

Ernst Federal Research Center for Animal Husbandry

Email: abdelmanova@vij.ru
Russian Federation, Moscow oblast, 142132

N. F. Bakoev

Ernst Federal Research Center for Animal Husbandry

Email: abdelmanova@vij.ru
Russian Federation, Moscow oblast, 142132

E. E. Antipina

Ernst Federal Research Center for Animal Husbandry; Institute of Archaeology of the Russian Academy of Sciences

Email: abdelmanova@vij.ru
Russian Federation, Moscow oblast, 142132; Moscow, 117292

L. V. Yavorskaya

Ernst Federal Research Center for Animal Husbandry; Institute of Archaeology of the Russian Academy of Sciences

Email: abdelmanova@vij.ru
Russian Federation, Moscow oblast, 142132; Moscow, 117292

A. V. Dotsev

Ernst Federal Research Center for Animal Husbandry

Email: abdelmanova@vij.ru
Russian Federation, Moscow oblast, 142132

N. A. Zinovieva

Ernst Federal Research Center for Animal Husbandry

Email: abdelmanova@vij.ru
Russian Federation, Moscow oblast, 142132

References

  1. Diamond J. Evolution, consequences and future of plant and animal domestication // Nature. 2002. V. 418. P. 700–707.
  2. Notter D. R. The importance of genetic diversity in livestock populations of the future // J. Anim. Sci. 1999. V. 77(1). P. 61–69. doi: 10.2527/1999.77161x
  3. Ajmone Mrsan P. A global view of livestock biodiversity and conservation – GLOBALDIV // Anim. Genet. 2010. V. 41(s1). P. 1–5. doi: 10.1111/j.1365- 2052.2010.02036.x
  4. The Second Report on the State of the World’s Animal Genetic Resources for Food and Agriculture / Eds edited by Scherf B. D.& Pilling D. FAO Commission on Genetic Resources for Food and Agriculture Assessments. Rome? 2015. (available at http://www.fao.org/3/a-i4787e/index.html).
  5. Loftus R.T., Scherf B. WorldWatchListfor Domestic Animal Diversity. FAO, Rome. 1993. P. 32–34.
  6. Groeneveld L.F., Lenstra J.A., Eding H. et al. Genetic diversity in farm animals – a review // Anim. Genet. 2010. V. 41. P. 6–31. doi: 10.1111/j.1365-2052.2010.02038.x
  7. Yang W., Kang X., Yang Q. et al. Review on the development of genotyping methods for assessing farm animal diversity // J. Anim. Sci. and Biotechnology. 2013. V. 4. P. 2–6. doi: 10.1186/2049-1891-4-2
  8. Сулимова Г. Е., Столповский Ю. А., Рузина М.Н., Захаров-Гезехус И. А. Мониторинг генофондов популяций животных в связи с задачами селекции и изучения филогении // Биоразнообразиe и динамика генофондов. М.: Наука, 2008. С. 211–214.
  9. Loftus R. T., MacHugh D. E., Bradley D. G. et al. Evidence for two independent domestications of cattle // PNAS USA. 1994. V. 91(7). P. 2757–2761. doi: 10.1073/pnas.91.7.2757
  10. Loftus R. T., MacHugh D. E., Ngere L. O. et al. Mitochondrial genetic variation in European, African and Indian cattle populations // Anim. Genet. 1994. V. 25. P. 265–271. doi: 10.1111/j.1365-2052.1994.tb00203.x
  11. Bradley D. G., MacHugh D. E., Cunningham P., Loftus R. T. Mitochondrial diversity and the origins of African and European cattle // PNAS USA. 1996. V. 93. P. 5131–5135. doi: 10.1073/pnas.93.10.5131
  12. Burger G., Gray M. W., Lang B. F. Mitochondrial genomes: Anything goes // Trends in Genetics. 2003/ V. 19. № 12. P. 709–716. doi.org/10.1016/j.tig.2003.10.012
  13. Frank K., Molnár J., Barta E., Marincs F. The full mitochondrial genomes of Mangalica pig breeds and their possible origin // Mitochondrial DNA Part B. 2017. P. 730–734. DOI.org/10.1080/23802359.2017.1390415
  14. Achilli A., Olivieri A., Pellecchia M. et al. Mitochondrial genomes of extinct aurochs survive in domestic cattle // Curr. Biol. 2008. V. 18(4). P. 157–158. doi: 10.1016/j.cub.2008.01.019
  15. Mannen H., Kohno M., Nagata Y. et al. Independent mitochondrial origin and historical genetic differentiation in North Eastern Asian cattle // Mol. Phylogenet. Evol. 2004. V. 32. P. 539–544. doi.org/10.1016/j.ympev.2004.01.010
  16. Troy C. S., MacHugh D. E., Bailey J. F. et al. Genetic evidence for Near-Eastern origins of European cattle // Nature. 2001. V. 410. P. 1088–1091. doi.org/10.1038/35074088
  17. Baig M., Beja-Pereira A., Mohammad R. et al. Phylogeography and origin of Indian domestic cattle // Curr. Science. 2005. V. 89(1). P. 38–40.
  18. Chen S. Y., Lin B. Z., Baig M. et al. Zebu cattle are an exclusive legacy of the South Asia Neolithic // Mol. Biol. Evol. 2010. V. 27. P. 1–6. doi.org/10.1093/molbev/msp213
  19. Magee D. A., Mannen H., Bradley D. G. Duality in Bos indicus mtDNA diversity: Support for geographical complexity in zebu domestication // The Evolution and History of Human Populations in South Asia: Inter-Disciplinary Studies in Archaeology, Biological Anthropology, Linguistics, and Genetics. Dordrecht: Springer, 2007. P. 385–392. doi: 10.1007/1-4020-5562-5
  20. Bailey J. F., Richards M. B., Macaulay V. A. et al. Ancient DNA suggests a recent expansion of European cattle from a diverse wild progenitor species // Proc. Biol. Sci. 1996. V. 263. P. 1467–1473. doi.org/10.1098/rspb.1996.0214
  21. Edwards C. J., Bollongino R., Scheu A. et al. Mitochondrial DNA analysis shows a Near Eastern Neolithic origin for domestic cattle and no indication of domestication of European aurochs // Proc. Biol. Sci. 2007. V. 274. P. 1377–1385. doi.org/10.1098/rspb.2007.0020
  22. Stock F., Edwards C. J., Bollongino R. et al. Cytochrome b sequences of ancient cattle and wild ox support phylogenetic complexity in the ancient and modern bovine populations // Anim. Genet. 2009. V. 40. № 5. P. 694–700. doi.org/10.1111/j.1365-2052.2009.01905.x
  23. Dymova, M. A., Zadorozhny A. V., Mishukova O. V. et al. Mitochondrial DNA analysis of ancient sheep from Altai // Anim. Genet. 2017. V. 48. № 5. P. 615–618. doi: 10.1111/age.12569
  24. Meadows J. R., Cemal I., Karaca O. et al. Five ovine mitochondrial lineages identified from sheep breeds of the near East // Genetics. 2007. V. 175. № 3. P. 1371–1379. doi: 10.1534/genetics.106.068353
  25. Zinovieva N. A., Sermyagin A. A., Dotsev A. V. et al. Animal genetic resources: Developing the research of allele pool of Russian cattle breeds – minireview // Sel’skokhozyaistvennaya Biologiya [Agricultural Biology]. 2019. V. 54(4). P. 631–641. doi: 10.15389/agrobiology.2019.4.631eng
  26. Боронецкая О. И., Чикурова Е. А., Никифоров А. И. Возникновение и особенности породообразования, и практика сохранения белого паркового скота// Известия ТСХА. 2017. Т. 6. P. 68–84. doi: 10.26897/0021-342X-2017-6-68-84
  27. Bro-Jørgensen M. H., Carøe C., Vieira F. G. et al. Ancient DNA analysis of Scandinavian medieval drinking horns and the horn of the last aurochs bull // J. Archaeol. Sci. 2018. V. 99. 47–54. doi: 10.1016/j.jas.2018.09.001
  28. Delsol N., Stucky B. J., Oswald J. A. et al. Ancient DNA confirms diverse origins of early post-Columbian cattle in the Americas // Sci. Rep. 2023. V. 13(1). P. 12444. doi: 10.1038/s41598-023-39518-3
  29. Robin E. D., Wong R. Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells // J. Cell. Physiol. 1988. V. 136(3). P. 507–513. doi: 10.1002/jcp.1041360316
  30. Цалкин В. И. Материалы для истории скотоводства и охоты в Древней Руси // Материалы и исследования по археологии СССР. № 51. М.: Наука, 1956. 183 c.
  31. Антипина Е. Е., Лебедева Е. Ю. Растения и животные. Глава 6 // Археология древнего Ярославля: загадки и открытия. 2-е изд., доп. и перераб. М.: ИА РАН, 2012. С. 144–229.
  32. Зиновьев А. В. Крупный рогатый скот и лошади средневековой Твери (XII–XVI) // Археология и история Пскова и Псковской земли. Семинар им. акад. В.В. Седова. Вып. 30. М.: ИА РАН; СПб.: Нестор-История, 2015. С. 240–244.
  33. Vasimuddin M., Misra S., Li H., Aluru S. Efficient architecture-aware acceleration of BWA-MEM for multicore systems // IEEE Parallel and Distributed Processing Symposium (IPDPS). 2019. doi: 10.1109/IPDPS.2019.00041
  34. Danecek P., Bonfield J. K., Liddle J. et al. Twelve years of SAMtools and BCFtools // Gigascience. 2021. V. 10(2). doi: 10.1093/gigascience/giab008
  35. Peng M. S., Fan L., Shi N. N. et al. DomeTree: A canonical toolkit for mitochondrial DNA analyses in domesticated animals // Mol. Ecol. Res. 2015. V. 15(5). P. 1238–1242. doi: 10.1111/1755-0998.12386
  36. Okonechnikov K., Golosova O., Fursov M. et al. Unipro UGENE: A unified bioinformatics toolkit // Bioinformatics. 2012. V. 28. № 8. P. 1166–1167. doi: 10.1093/bioinformatics/bts091
  37. Rozas J., Ferrer-Mata A., Sánchez-DelBarrio J. C. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets // Mol. Biol. Evol. 2017. V. 34 (12). P. 3299–3302. doi: 10.1093/molbev/msx248
  38. Lenstra J.A., Ajmone-Marsan P., Beja-Pereira A. et al. Meta-analysis of mitochondrial DNA reveals several population bottlenecks during worldwide migrations of cattle // Diversity. 2014. V. 6. P. 178–187. doi: 10.3390/d6010178
  39. Zhang N., Shao X., Guo Y. et al. Ancient mitochondrial genomes provide new clues to the origin of domestic cattle in China // Genes (Basel). 2023. V. 14(7). doi: 10.3390/genes14071313
  40. Xia X. T., Achilli A., Lenstra J. A. et al. Mitochondrial genomes from modern and ancient Turano-Mongolian cattle reveal an ancient diversity of taurine maternal lineages in East Asia // Heredity (Edinb). 2021. V. 126(6). P. 1000–1008. doi: 10.1038/s41437-021-00428-7
  41. Цалкин В. И. Древнейшие домашние животные Восточной Европы // Материалы и исследования по археологии СССР. № 161. М.: Наука, 1970. 280 c.
  42. Антипина Е. Е., Лебедева Е. Ю. Основные этапы развития комплексной производящей экономики в западной половине Евразии (от эпохи раннего металла до железного века) // Мегаструктура Евразийского мира: основные этапы формирования: материалы Всероссийской научной конференции. 2012. М.: ИА РАН, С. 72–76.
  43. Гак Е. И., Антипина Е. Е., Лебедева Е. Ю., Кайзер Э. Хозяйственная модель поселения среднедонской катакомбной культуры Рыкань-3 // Российская археология. 2019. Вып. 2. C. 19–34.
  44. Антипина Е. Е., Яворская Л. В. Археозоологические материалы из раскопок на территории Московского Кремля: хозяйственные и социальные аспекты повседневной жизни в XII–XVII вв. // Древности Московского Кремля. Т. 1. М.: ИА РАН, 2022. С. 309–325.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Neighbor–Joining dendrogram based on genetic distances of the complete mitochondrial sequence of cattle. AR – archaeological samples; modern samples: YR – Yaroslavl breed, KH – Kholmogory breed.

Download (200KB)
3. Fig. 2. Relationship between archaeological and modern samples of Yaroslavl and Kholmogory rocks based on the analysis of D-loop polymorphism of the mtDNA sequence. AR – archaeological samples: modern samples: YR – Yaroslavl rock, KH – Kholmogory rock.

Download (118KB)
4. Fig. 3. Median haplotype network of cattle based on the sequence of the hypervariable region of the D-loop.

Download (234KB)

Copyright (c) 2024 Russian Academy of Sciences