Study of the Cattle Mitochondrial Genomes from Archaeological Finds on the Territory of Yaroslavl (XIII–XIV Centuries)
- Authors: Abdelmanova A.S.1, Fornara M.S.1, Bakoev N.F.1, Antipina E.E.1,2, Yavorskaya L.V.1,2, Dotsev A.V.1, Zinovieva N.A.1
-
Affiliations:
- Ernst Federal Research Center for Animal Husbandry
- Institute of Archaeology of the Russian Academy of Sciences
- Issue: Vol 60, No 11 (2024)
- Pages: 50-59
- Section: ГЕНЕТИКА ЖИВОТНЫХ
- URL: https://rjonco.com/0016-6758/article/view/667163
- DOI: https://doi.org/10.31857/S0016675824110041
- EDN: https://elibrary.ru/wblcgq
- ID: 667163
Cite item
Abstract
Evolutionary processes and selective breeding have developed diverse arrays of local livestock populations adapted to specific natural and climatic conditions. Increased selection pressure and concentration on a few high-yielding breeds have led to the erosion of genetic resources worldwide. One effective approach to assessing genetic diversity is the study of mitochondrial DNA (mtDNA) polymorphism, which exhibits a high level of variability and is characterised by a lack of recombination, allowing the study of genetic relationships between breeds and the tracing of both ancient and relatively recent evolutionary events. The study of the evolution and demographic history of farm animal breeds is made possible by the involvement of historical and archaeological specimens in research. The aim of our work was to identify the most efficient way to investigate mitochondrial DNA extracted from archaeological samples, allowing the analysis of population genetic parameters. The study included samples dating from the late XIII–XIV centuries, discovered during excavations of the central part of the medieval Kremlin within the boundaries of modern Yaroslavl. The methods of full-genome sequencing and Sanger sequencing of mtDNA fragments were used to study the maternal variability of cattle bred in the forest zone of the Russian Plain. A dendrogram based on genetic distances of the complete mitochondrial sequence using the Neighbor-Joining method revealed clustering of archaeological samples in groups of modern Yaroslavl and Kholmogorsk cattle, which may indicate common ancestors of all three populations. A detailed examination of some regions of the mitogenome revealed that the archaeological samples were successfully genotyped with sequences that slightly overlapped with each other. Therefore, a system for genotyping the hypervariable region of the D-loop using Sanger sequencing of the target fragment was developed. The analysis of nucleotide and haplotypic diversity revealed minimal values of these parameters in the group of archaeological samples. The constructed median haplotype network allowed to attribute the archaeological samples to haplogroup T3, the most widespread in European cattle breeds. The analysis of the obtained data allows us to assume the origin of the studied archaeological specimens from individuals of the local group of cattle bred in the vicinity of medieval Yaroslavl in the XIII–XIV centuries.
Keywords
Full Text

About the authors
A. S. Abdelmanova
Ernst Federal Research Center for Animal Husbandry
Author for correspondence.
Email: abdelmanova@vij.ru
Russian Federation, Moscow oblast, 142132
M. S. Fornara
Ernst Federal Research Center for Animal Husbandry
Email: abdelmanova@vij.ru
Russian Federation, Moscow oblast, 142132
N. F. Bakoev
Ernst Federal Research Center for Animal Husbandry
Email: abdelmanova@vij.ru
Russian Federation, Moscow oblast, 142132
E. E. Antipina
Ernst Federal Research Center for Animal Husbandry; Institute of Archaeology of the Russian Academy of Sciences
Email: abdelmanova@vij.ru
Russian Federation, Moscow oblast, 142132; Moscow, 117292
L. V. Yavorskaya
Ernst Federal Research Center for Animal Husbandry; Institute of Archaeology of the Russian Academy of Sciences
Email: abdelmanova@vij.ru
Russian Federation, Moscow oblast, 142132; Moscow, 117292
A. V. Dotsev
Ernst Federal Research Center for Animal Husbandry
Email: abdelmanova@vij.ru
Russian Federation, Moscow oblast, 142132
N. A. Zinovieva
Ernst Federal Research Center for Animal Husbandry
Email: abdelmanova@vij.ru
Russian Federation, Moscow oblast, 142132
References
- Diamond J. Evolution, consequences and future of plant and animal domestication // Nature. 2002. V. 418. P. 700–707.
- Notter D. R. The importance of genetic diversity in livestock populations of the future // J. Anim. Sci. 1999. V. 77(1). P. 61–69. doi: 10.2527/1999.77161x
- Ajmone Mrsan P. A global view of livestock biodiversity and conservation – GLOBALDIV // Anim. Genet. 2010. V. 41(s1). P. 1–5. doi: 10.1111/j.1365- 2052.2010.02036.x
- The Second Report on the State of the World’s Animal Genetic Resources for Food and Agriculture / Eds edited by Scherf B. D.& Pilling D. FAO Commission on Genetic Resources for Food and Agriculture Assessments. Rome? 2015. (available at http://www.fao.org/3/a-i4787e/index.html).
- Loftus R.T., Scherf B. WorldWatchListfor Domestic Animal Diversity. FAO, Rome. 1993. P. 32–34.
- Groeneveld L.F., Lenstra J.A., Eding H. et al. Genetic diversity in farm animals – a review // Anim. Genet. 2010. V. 41. P. 6–31. doi: 10.1111/j.1365-2052.2010.02038.x
- Yang W., Kang X., Yang Q. et al. Review on the development of genotyping methods for assessing farm animal diversity // J. Anim. Sci. and Biotechnology. 2013. V. 4. P. 2–6. doi: 10.1186/2049-1891-4-2
- Сулимова Г. Е., Столповский Ю. А., Рузина М.Н., Захаров-Гезехус И. А. Мониторинг генофондов популяций животных в связи с задачами селекции и изучения филогении // Биоразнообразиe и динамика генофондов. М.: Наука, 2008. С. 211–214.
- Loftus R. T., MacHugh D. E., Bradley D. G. et al. Evidence for two independent domestications of cattle // PNAS USA. 1994. V. 91(7). P. 2757–2761. doi: 10.1073/pnas.91.7.2757
- Loftus R. T., MacHugh D. E., Ngere L. O. et al. Mitochondrial genetic variation in European, African and Indian cattle populations // Anim. Genet. 1994. V. 25. P. 265–271. doi: 10.1111/j.1365-2052.1994.tb00203.x
- Bradley D. G., MacHugh D. E., Cunningham P., Loftus R. T. Mitochondrial diversity and the origins of African and European cattle // PNAS USA. 1996. V. 93. P. 5131–5135. doi: 10.1073/pnas.93.10.5131
- Burger G., Gray M. W., Lang B. F. Mitochondrial genomes: Anything goes // Trends in Genetics. 2003/ V. 19. № 12. P. 709–716. doi.org/10.1016/j.tig.2003.10.012
- Frank K., Molnár J., Barta E., Marincs F. The full mitochondrial genomes of Mangalica pig breeds and their possible origin // Mitochondrial DNA Part B. 2017. P. 730–734. DOI.org/10.1080/23802359.2017.1390415
- Achilli A., Olivieri A., Pellecchia M. et al. Mitochondrial genomes of extinct aurochs survive in domestic cattle // Curr. Biol. 2008. V. 18(4). P. 157–158. doi: 10.1016/j.cub.2008.01.019
- Mannen H., Kohno M., Nagata Y. et al. Independent mitochondrial origin and historical genetic differentiation in North Eastern Asian cattle // Mol. Phylogenet. Evol. 2004. V. 32. P. 539–544. doi.org/10.1016/j.ympev.2004.01.010
- Troy C. S., MacHugh D. E., Bailey J. F. et al. Genetic evidence for Near-Eastern origins of European cattle // Nature. 2001. V. 410. P. 1088–1091. doi.org/10.1038/35074088
- Baig M., Beja-Pereira A., Mohammad R. et al. Phylogeography and origin of Indian domestic cattle // Curr. Science. 2005. V. 89(1). P. 38–40.
- Chen S. Y., Lin B. Z., Baig M. et al. Zebu cattle are an exclusive legacy of the South Asia Neolithic // Mol. Biol. Evol. 2010. V. 27. P. 1–6. doi.org/10.1093/molbev/msp213
- Magee D. A., Mannen H., Bradley D. G. Duality in Bos indicus mtDNA diversity: Support for geographical complexity in zebu domestication // The Evolution and History of Human Populations in South Asia: Inter-Disciplinary Studies in Archaeology, Biological Anthropology, Linguistics, and Genetics. Dordrecht: Springer, 2007. P. 385–392. doi: 10.1007/1-4020-5562-5
- Bailey J. F., Richards M. B., Macaulay V. A. et al. Ancient DNA suggests a recent expansion of European cattle from a diverse wild progenitor species // Proc. Biol. Sci. 1996. V. 263. P. 1467–1473. doi.org/10.1098/rspb.1996.0214
- Edwards C. J., Bollongino R., Scheu A. et al. Mitochondrial DNA analysis shows a Near Eastern Neolithic origin for domestic cattle and no indication of domestication of European aurochs // Proc. Biol. Sci. 2007. V. 274. P. 1377–1385. doi.org/10.1098/rspb.2007.0020
- Stock F., Edwards C. J., Bollongino R. et al. Cytochrome b sequences of ancient cattle and wild ox support phylogenetic complexity in the ancient and modern bovine populations // Anim. Genet. 2009. V. 40. № 5. P. 694–700. doi.org/10.1111/j.1365-2052.2009.01905.x
- Dymova, M. A., Zadorozhny A. V., Mishukova O. V. et al. Mitochondrial DNA analysis of ancient sheep from Altai // Anim. Genet. 2017. V. 48. № 5. P. 615–618. doi: 10.1111/age.12569
- Meadows J. R., Cemal I., Karaca O. et al. Five ovine mitochondrial lineages identified from sheep breeds of the near East // Genetics. 2007. V. 175. № 3. P. 1371–1379. doi: 10.1534/genetics.106.068353
- Zinovieva N. A., Sermyagin A. A., Dotsev A. V. et al. Animal genetic resources: Developing the research of allele pool of Russian cattle breeds – minireview // Sel’skokhozyaistvennaya Biologiya [Agricultural Biology]. 2019. V. 54(4). P. 631–641. doi: 10.15389/agrobiology.2019.4.631eng
- Боронецкая О. И., Чикурова Е. А., Никифоров А. И. Возникновение и особенности породообразования, и практика сохранения белого паркового скота// Известия ТСХА. 2017. Т. 6. P. 68–84. doi: 10.26897/0021-342X-2017-6-68-84
- Bro-Jørgensen M. H., Carøe C., Vieira F. G. et al. Ancient DNA analysis of Scandinavian medieval drinking horns and the horn of the last aurochs bull // J. Archaeol. Sci. 2018. V. 99. 47–54. doi: 10.1016/j.jas.2018.09.001
- Delsol N., Stucky B. J., Oswald J. A. et al. Ancient DNA confirms diverse origins of early post-Columbian cattle in the Americas // Sci. Rep. 2023. V. 13(1). P. 12444. doi: 10.1038/s41598-023-39518-3
- Robin E. D., Wong R. Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells // J. Cell. Physiol. 1988. V. 136(3). P. 507–513. doi: 10.1002/jcp.1041360316
- Цалкин В. И. Материалы для истории скотоводства и охоты в Древней Руси // Материалы и исследования по археологии СССР. № 51. М.: Наука, 1956. 183 c.
- Антипина Е. Е., Лебедева Е. Ю. Растения и животные. Глава 6 // Археология древнего Ярославля: загадки и открытия. 2-е изд., доп. и перераб. М.: ИА РАН, 2012. С. 144–229.
- Зиновьев А. В. Крупный рогатый скот и лошади средневековой Твери (XII–XVI) // Археология и история Пскова и Псковской земли. Семинар им. акад. В.В. Седова. Вып. 30. М.: ИА РАН; СПб.: Нестор-История, 2015. С. 240–244.
- Vasimuddin M., Misra S., Li H., Aluru S. Efficient architecture-aware acceleration of BWA-MEM for multicore systems // IEEE Parallel and Distributed Processing Symposium (IPDPS). 2019. doi: 10.1109/IPDPS.2019.00041
- Danecek P., Bonfield J. K., Liddle J. et al. Twelve years of SAMtools and BCFtools // Gigascience. 2021. V. 10(2). doi: 10.1093/gigascience/giab008
- Peng M. S., Fan L., Shi N. N. et al. DomeTree: A canonical toolkit for mitochondrial DNA analyses in domesticated animals // Mol. Ecol. Res. 2015. V. 15(5). P. 1238–1242. doi: 10.1111/1755-0998.12386
- Okonechnikov K., Golosova O., Fursov M. et al. Unipro UGENE: A unified bioinformatics toolkit // Bioinformatics. 2012. V. 28. № 8. P. 1166–1167. doi: 10.1093/bioinformatics/bts091
- Rozas J., Ferrer-Mata A., Sánchez-DelBarrio J. C. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets // Mol. Biol. Evol. 2017. V. 34 (12). P. 3299–3302. doi: 10.1093/molbev/msx248
- Lenstra J.A., Ajmone-Marsan P., Beja-Pereira A. et al. Meta-analysis of mitochondrial DNA reveals several population bottlenecks during worldwide migrations of cattle // Diversity. 2014. V. 6. P. 178–187. doi: 10.3390/d6010178
- Zhang N., Shao X., Guo Y. et al. Ancient mitochondrial genomes provide new clues to the origin of domestic cattle in China // Genes (Basel). 2023. V. 14(7). doi: 10.3390/genes14071313
- Xia X. T., Achilli A., Lenstra J. A. et al. Mitochondrial genomes from modern and ancient Turano-Mongolian cattle reveal an ancient diversity of taurine maternal lineages in East Asia // Heredity (Edinb). 2021. V. 126(6). P. 1000–1008. doi: 10.1038/s41437-021-00428-7
- Цалкин В. И. Древнейшие домашние животные Восточной Европы // Материалы и исследования по археологии СССР. № 161. М.: Наука, 1970. 280 c.
- Антипина Е. Е., Лебедева Е. Ю. Основные этапы развития комплексной производящей экономики в западной половине Евразии (от эпохи раннего металла до железного века) // Мегаструктура Евразийского мира: основные этапы формирования: материалы Всероссийской научной конференции. 2012. М.: ИА РАН, С. 72–76.
- Гак Е. И., Антипина Е. Е., Лебедева Е. Ю., Кайзер Э. Хозяйственная модель поселения среднедонской катакомбной культуры Рыкань-3 // Российская археология. 2019. Вып. 2. C. 19–34.
- Антипина Е. Е., Яворская Л. В. Археозоологические материалы из раскопок на территории Московского Кремля: хозяйственные и социальные аспекты повседневной жизни в XII–XVII вв. // Древности Московского Кремля. Т. 1. М.: ИА РАН, 2022. С. 309–325.
Supplementary files
