Tetracycline Induction of Natural Drug Resistance to Bedaquiline in Mycobacterium smegmatis mc2 155

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The emergence of antibiotic resistance in microorganisms, including mycobacteria, poses a serious problem in modern medicine, reducing treatment effectiveness. In the modern world, there is considerable discussion about the influence of minimal selective concentrations of antibiotics (MSC), which are significantly lower than classical minimal inhibitory concentrations (MIC), on the emergence of antibacterial resistance. It is assumed that such microconcentrations may act as an additional mechanism for selecting drug-resistant strains, which is particularly relevant due to the accumulation of antibiotic concentrations in the environment as a result of human activity. In the context of mycobacteria, understanding the processes of induction of resistance to antibiotics at the MSC level is especially important for the development of effective treatment strategies and control of the spread of drug resistance. The aim of this study was to investigate the induction of the natural drug resistance system in mycobacteria under the influence of concentrations significantly lower than standard MIC and not affecting cell growth. The resistance of Mycobacterium smegmatis mc2 155 to one of the main antibiotics used in medical practice, bedaquiline, was analyzed during induction by tetracycline, ofloxacin, and kanamycin. It was established that one of the mechanisms influencing the change in sensitivity of the M. smegmatis mc2 155 strain during induction by microconcentrations of tetracycline is the antibiotic efflux system – MmpS5-Mmpl5.

Full Text

Restricted Access

About the authors

A. A. Vatlin

Peoples’ Friendship University of Russia; Vavilov Institute of General Genetics Russian Academy of Sciences

Author for correspondence.
Email: vatlin_alexey123@mail.ru
Russian Federation, Moscow, 117198; Moscow, 119991

D. A. Tsybizov

Peoples’ Friendship University of Russia

Email: vatlin_alexey123@mail.ru
Russian Federation, Moscow, 117198

V. S. Letvinova

Vavilov Institute of General Genetics Russian Academy of Sciences

Email: vatlin_alexey123@mail.ru
Russian Federation, Moscow, 119991

V. N. Danilenko

Vavilov Institute of General Genetics Russian Academy of Sciences

Email: vatlin_alexey123@mail.ru
Russian Federation, Moscow, 119991

References

  1. Larsson D.G.J., Flach C.F. Antibiotic resistance in the environment: 5 // Nat. Rev. Microbiol. 2022. V. 20. № 5. P. 257–269. doi: 10.1038/s41579-021-00649-x
  2. Hjort K., Fermér E., Tang P.C., Andersson D.I. Antibiotic minimal selective concentrations and fitness costs during biofilm and planktonic growth // mBio. Am. Soc. for Microbiology, 2022. V. 13. № 3. doi: 10.1128/mbio.01447-22
  3. Stanton I.C., Murray A.K., Zhang L. et al. Evolution of antibiotic resistance at low antibiotic concentrations including selection below the minimal selective concentration: 1 // Commun. Biol. 2020. V. 3. № 1. P. 1–11. doi: 10.1038/s42003-020-01176-w
  4. Swinkels A.F., Fischer E.A.J., Korving L. et al. Defining minimal selective concentrations of amoxicillin, doxycycline and enrofloxacin in broiler-derived cecal fermentations by phenotype, microbiome and resistome // bioRxiv, 2023. doi: 10.1101/2023.11.21.568155
  5. Gullberg E., Cao S., Berg O.G. et al. Selection of resistant bacteria at very low antibiotic concentrations // PLoS Pathog. 2011. V. 7. № 7. doi: 10.1371/journal.ppat.1002158
  6. Gullberg E., Albrecht L.M., Karlsson C. et al. Selection of a multidrug resistance plasmid by sublethal levels of antibiotics and heavy metals // mBio. 2014. V. 5. № 5. doi: 10.1128/mBio.01918-14
  7. Liu A., Fong A., Becket E. et al. Selective advantage of resistant strains at trace levels of antibiotics: А simple and ultrasensitive color test for detection of antibiotics and genotoxic agents // Antimicrob. Agents Chemother. 2011. V. 55. № 3. P. 1204–1210. doi: 10.1128/AAC.01182-10
  8. Sandegren L. Selection of antibiotic resistance at very low antibiotic concentrations // Ups. J. Med. Sci. 2014. V. 119. № 2. P. 103–107. doi: 10.3109/03009734.2014.904457.
  9. Vatlin A.A., Bekker O.B., Shur K.V. et al. Kanamycin and ofloxacin activate the intrinsic resistance to multiple antibiotics in Mycobacterium smegmatis // Biology (Basel). 2023. V. 12. № 4. doi: 10.3390/biology12040506
  10. Прозоров А., Даниленко В. Системы “токсин-антитоксин” у бактерий: инструмент апоптоза или модуляторы метаболизма? // Микробиология. 2010. Т. 79. № 2. С. 147–159.
  11. Прозоров А.А., Федорова И.В., Беккер О.Б., Даниленко В.Н. Факторы вирулентности Mycobacterium tuberculosis: генетический контроль, новые концепции // Генетика. 2014. Т. 50. № 8. С. 885.
  12. Maslov D.A., Shur K.V., Vatlin A.A., Danilenko V.N. MmpS5-MmpL5 transporters provide mycobacterium smegmatis resistance to imidazo[1,2-b][1,2,4,5]tetrazines // Pathogens. 2020. V. 9. № 3. doi: 10.3390/pathogens9030166
  13. Шур К.В., Фролова С.Г., Акимова Н.И., Маслов Д.А. Тест-система для in vitro скрининга кандидатов в антимикобактериальные препараты на устойчивость, опосредованную mmps5-mmpl5-транспортерами // Генетика. 2021. T. 57. № 1. С. 108–111. doi: 10.1134/S1022795421010154
  14. Yamamoto K., Nakata N., Mukai T. et al. Coexpression of MmpS5 and MmpL5 contributes to both efflux transporter MmpL5 trimerization and drug resistance in Mycobacterium tuberculosis // mSphere. 2021. V. 6. № 1. doi: 10.1128/mSphere.00518-20
  15. Shahbaaz M., Maslov D.A., Vatlin A.A. et al. Repurposing based identification of novel inhibitors against MmpS5-MmpL5 efflux pump of Mycobacterium smegmatis: A combined in silico and in vitro study // Biomedicines. 2022. V. 10. № 2. doi: 10.3390/biomedicines10020333
  16. Deng W., Li C., Xie J. The underling mechanism of bacterial TetR/AcrR family transcriptional repressors // Cell Signal. 2013. V. 25. № 7. P. 1608–1613. doi: 10.1016/j.cellsig.2013.04.003
  17. Richard M., Gutiérrez A.V., Viljoen A.J. et al. Mechanistic and structural insights into the unique tetr-dependent regulation of a drug efflux pump in Mycobacterium abscessus // Front. Microbiol. 2018. V. 9. doi: 10.3389/fmicb.2018.00649
  18. Andries K., Villellas C., Coeck N. et al. Acquired resistance of Mycobacterium tuberculosis to bedaquiline // PloS One. 2014. V. 9. № 7. doi: 10.1371/journal.pone.0102135
  19. Hartkoorn R.C., Uplekar S., Cole S.T. Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis // Antimicrob. Agents Chemother. 2014. V. 58. № 5. P. 2979–2981. doi: 10.1128/AAC.00037-14
  20. CFR – Code of Federal Regulations Title 21. URL: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=556&showFR=1&subpartNode=21:6.0.1.1.18.2 (accessed: 06.03.2023).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diameters of the inhibition zones of M. smegmatis mc2 155 culture by bedaquiline (0.01 nmol/disc) upon induction by ofloxacin, kanamycin and tetracycline. Green column – control sample without induction. Columns represent mean values ​​in mm. Standard deviation is calculated from three independent biological replicates.

Download (207KB)
3. Fig. 2. Relative expression level of MSMEG_1380 and MSMEG_1382 genes in M. smegmatis mc2 155 cells cultured in the presence of tetracycline at a concentration that does not affect cell growth. Expression of the studied genes in the absence of antibiotics is taken as one; the standard deviation is calculated from three independent biological replicates.

Download (130KB)
4. Fig. 3. Growth curve of the M. smegmatis mc2 155 strain (w.t., yellow) in the presence of bedaquiline (Bd, green) and in the presence of bedaquiline and the tetracycline inducer (Bd+tet, blue). The error limit is the standard deviation. The experiment was carried out in three independent repetitions.

Download (377KB)

Copyright (c) 2024 Russian Academy of Sciences