Hypermethylation in Ovarian Cancer of Long Non-Coding RNA Genes: HOTAIR, GAS5, LINC00472, LINC00886, TUG1

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Recently, more and more data have been accumulating indicating the role of long non-coding RNAs (lncRNAs) in the regulation of biological processes in cells, as well as in the mechanisms of cancer development and progression. Aberrant methylation of promoter regions of both protein genes and lncRNA genes can disrupt their expression and functional activity. Using bioinformatics databases, six lncRNA genes (GAS5, HOTAIR, LINC00472, LINC00886, SNHG17 and TUG1) with CpG islands, differentially expressed and presumably hypermethylated in tumors of patients with ovarian cancer (OC) were selected. A statistically significant (p < 0.05) increase in the methylation level in tumours was demonstrated in a sample of 93 OC specimens using methylation-specific real-time PCR assay. Moreover, for the genes LINC00472, LINC00886, SNHG17 and TUG1, hypermethylation in OC was detected for the first time. 5 genes (except SNHG17) showed a further increase in methylation levels at a more advanced stage, and 4 genes (except SNHG17 and LINC00886) showed a significant association with metastasis. Using real-time RT-PCR, differential changes in the expression level of the GAS5, HOTAIR, SNHG17 and TUG1 genes and a significant correlation of methylation with expression for the GAS5 gene were shown. Thus, hypermethylation associated with the progression and/or development of OC was detected for six lncRNA genes, which is important for elucidating the epigenetic processes involved in the pathogenesis of OC and can be used as new biomarkers of OC.

Full Text

Restricted Access

About the authors

A. M. Burdyonny

Institute of General Pathology and Pathophysiology

Author for correspondence.
Email: burdennyy@gmail.com
Russian Federation, Moscow

S. S. Lukina

Institute of General Pathology and Pathophysiology

Email: burdennyy@gmail.com
Russian Federation, Moscow

L. A. Uroshlev

Vavilov Institute of General Genetics of the Russian Academy of Sciences

Email: burdennyy@gmail.com
Russian Federation, Moscow

E. A. Filippova

Institute of General Pathology and Pathophysiology

Email: burdennyy@gmail.com
Russian Federation, Moscow

I. V. Pronina

Institute of General Pathology and Pathophysiology

Email: burdennyy@gmail.com
Russian Federation, Moscow

M. V. Fridman

Vavilov Institute of General Genetics of the Russian Academy of Sciences

Email: burdennyy@gmail.com
Russian Federation, Moscow

K. I. Zhordania

Blokhin National Medical Research Center of Oncology

Email: burdennyy@gmail.com
Russian Federation, Moscow

T. P. Kazubskaya

Blokhin National Medical Research Center of Oncology

Email: burdennyy@gmail.com
Russian Federation, Moscow

N. E. Kushlinsky

Blokhin National Medical Research Center of Oncology

Email: burdennyy@gmail.com
Russian Federation, Moscow

V. I. Loginov

Institute of General Pathology and Pathophysiology

Email: burdennyy@gmail.com
Russian Federation, Moscow

E. A. Braga

Institute of General Pathology and Pathophysiology; Research Centre for Medical Genetics

Email: eleonora10_45@mail.ru
Russian Federation, Moscow; Moscow

References

  1. Каприн А.Д., Старинский В.В., Шахзадова А.О. Злокачественные новообразования в России в 2021 году (заболеваемость и смертность) // М.: МНИОИ им. П.А. Герцена – филиал ФГБУ “НМИЦ радиологии” Минздрава России, 2022. 252 с.
  2. Vogell A., Evans M.L. Cancer screening in women // Obstet. Gynecol. Clin. North. Am. 2019. V. 46. № 3. P. 485–499. https://doi.org/10.1016/j.ogc.2019.04.007
  3. Wei J.W., Huang K., Yang C., Kang C.S. Non-coding RNAs as regulators in epigenetics (Review) // Oncol. Rep. 2017. V. 37. № 1. P. 3–9. https://doi.org/10.3892/or.2016.5236
  4. Hombach S., Kretz M. Non-coding RNAs: Classification, Biology and Functioning // Adv. Exp. Med. Biol. 2016. V. 937. P. 3–17. https://doi.org/10.1007/978-3-319-42059-2_1
  5. Baek D., Villén J., Shin C. et al. The impact of microRNAs on protein output // Nature. 2008. V. 455. № 7209. P. 64–71. https://doi.org/10.1038/nature07242
  6. Sanchez Calle A., Kawamura Y., Yamamoto Y. et al. Emerging roles of long non-coding RNA in cancer // Cancer Sci. 2018. V. 109. № 7. P. 2093–2100. https://doi.org/10.1111/cas.13642
  7. Буре И.В., Кузнецова Е.Б., Залетаев Д.В. Длинные некодирующие РНК и их роль в онкогенезе // Мол. Биология 2018. Т. 52. № 6. С. 907–920. https://doi.org/10.1134/S0026898418060034.
  8. Zhang X., Wang W., Zhu W. et al. Mechanisms and functions of long non-coding RNAs at multiple regulatory levels // Int. J. Mol. Sci. 2019. V. 20. № 22. https://doi.org/10.3390/ijms20225573
  9. Moutinho C., Esteller M. MicroRNAs and epigenetics // Adv. Cancer Res. 2017. V. 135. P. 189–220. https://doi.org/10.1016/bs.acr.2017.06.003
  10. Ma L., Li C., Yin H. et al. The echanism of DNA methylation and miRNA in breast cancer // Int. J. Mol. Sci. 2023. V. 24. № 11. https://doi.org/10.3390/ijms24119360.
  11. Sheng X., Li J., Yang L. et al. Promoter hypermethylation influences the suppressive role of maternally expressed 3, a long non-coding RNA, in the development of epithelial ovarian cancer // Oncol. Rep. 2014. V. 32. № 1. P. 277–285. https://doi.org/10.3892/or.2014.3208
  12. Gokulnath P., de Cristofaro T., Manipur I. et al. Long non-coding RNA HAND2-AS1 acts as a tumor suppressor in high-grade serous ovarian carcinoma // Int. J. Mol. Sci. 2020. V. 21. № 11. https://doi.org/10.3390/ijms21114059
  13. Di Fiore R., Suleiman S., Drago-Ferrante R. et al. LncRNA MORT (ZNF667-AS1) in cancer – is there a possible role in gynecological malignancies? // Int. J. Mol. Sci. 2021. V. 22. № 15. https://doi.org/10.3390/ijms22157829
  14. Бурденный А.М., Филиппова Е.А., Иванова Н.А. и др. Гиперметилирование генов новых длинных некодирующих РНК в опухолях яичников и метастазах: двойственный эффект // Бюлл. Эксп. Биол. Мед. 2021. Т. 171. № 3. С. 370–374. https://doi.org/10.1007/s10517-021-05230-3
  15. Zhang W., Klinkebiel D., Barger C.J. et al. Global DNA hypomethylation in epithelial ovarian cancer: Passive demethylation and association with genomic instability // Cancers (Basel). 2020. V. 12. № 3. https://doi.org/10.3390/cancers12030764
  16. Klinkebiel D, Zhang W, Akers SN et al. DNA methylome analyses implicate fallopian tube epithelia as the origin for high-grade serous ovarian cancer // Mol Cancer Res. 2016. V. 14. № 9. P. 787–794. https://doi.org/10.1158/1541-7786.MCR-16-0097
  17. Pronina I.V., Loginov V.I., Burdennyy A.M. et al. DNA methylation contributes to deregulation of 12 cancer-associated microRNAs and breast cancer progression // Gene. 2017. V. 604. P. 1–8. https://doi.org/10.1016/j.gene.2016.12.018
  18. Pronina I.V., Uroshlev L.A., Moskovtsev A.A. et al. Dysregulation of lncRNA–miRNA–mRNA interactome as a marker of metastatic process in ovarian cancer // Biomedicines. 2022. V. 10. № 4. https://doi.org/10.3390/biomedicines10040824
  19. Tang Z., Kang B., Li C. et al. GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis // Nucl. Ac. Res. 2019. V. 47. № W1. P. W556–W560. https://doi.org/10.1093/nar/gkz430
  20. Zhang N., Wang A.Y., Wang X.K. et al. GAS5 is downregulated in gastric cancer cells by promoter hypermethylation and regulates adriamycin sensitivity // Eur. Rev. Med. Pharmacol. Sci. 2016. V. 20. № 15. P. 3199–3205
  21. Zhang Y.J., Xie R., Jiang J. et al. 5-Aza-dC suppresses melanoma progression by inhibiting GAS5 hypermethylation // Oncol. Rep. 2022. V. 48. № 1. https://doi.org/10.3892/or.2022.8334
  22. Селезнева Ал. Д., Филиппова Е.А., Селезнева Ан. Д. и др. Гиперметилирование группы генов длинных некодирующих РНК в развитии и прогрессии рака молочной железы // Бюлл. Эксп. Биол. и Мед. 2022. Т. 173. № 6. С. 754–758.
  23. Wang W., Yu S., Li W. et al. Silencing of lncRNA SNHG17 inhibits the tumorigenesis of epithelial ovarian cancer through regulation of miR-485-5p/AKT1 axis // Biochem. Biophys. Res. Commun. 2022. V. 637. P. 117–126. https://doi.org/10.1016/j.bbrc.2022.10.091
  24. Dong Q., Long X., Cheng J. et al. LncRNA GAS5 suppresses ovarian cancer progression by targeting the miR-96-5p/PTEN axis // Ann. Transl. Med. 2021. V. 9. № 24. https://doi.org/10.21037/atm-21-6134
  25. Lin G., Wu T., Gao X. et al. Research Progress of Long Non-Coding RNA GAS5 in Malignant Tumors // Front Oncol. 2022. V. 12. № 846497. https://doi.org/10.3389/fonc.2022.846497
  26. Teschendorff A.E., Lee S.H., Jones A. HOTAIR and its surrogate DNA methylation signature indicate carboplatin resistance in ovarian cancer // Genome Med. 2015. V. 7. № 108. https://doi.org/10.1186/s13073-015-0233-4
  27. Shen X., Hu X., Mao J. et al. The long noncoding RNA TUG1 is required for TGF-β/TWIST1/EMT-mediated metastasis in colorectal cancer cells // Cell. Death. Dis. 2020. V. 11. № 1. № 65. https://doi.org/10.1038/s41419-020-2254-1
  28. Kuang D., Zhang X., Hua S. et al. Long non-coding RNA TUG1 regulates ovarian cancer proliferation and metastasis via affecting epithelial-mesenchymal transition. // Exp. Mol. Pathol. 2016. V. 101. № 2. P. 267–273. https://doi.org/10.1016/j.yexmp.2016.09.008
  29. Shen Y., Wang Z., Loo L.W. et al. LINC00472 expression is regulated by promoter methylation and associated with disease-free survival in patients with grade 2 breast cancer // Breast Cancer Res. Treat. 2015. V. 154. № 3. P. 473–482. https://doi.org/10.1007/s10549-015-3632-8
  30. Tsai K.W., Tsai C.Y., Chou N.H. et al. Aberrant DNA hypermethylation silenced LncRNA expression in gastric cancer // Anticancer Res. 2019. V. 39. № 10. P. 5381–5391. https://doi.org/10.21873/anticanres.13732
  31. Lan L., Cao H., Chi W. et al. Aberrant DNA hypermethylation-silenced LINC00886 gene accelerates malignant progression of laryngeal carcinoma // Pathol. Res. Pract. 2020. V. 216. № 4. https://doi.org/10.1016/j.prp.2020.152877
  32. Dong Z., Yang L., Lu J. et al. Downregulation of LINC00886 facilitates epithelial-mesenchymal transition through SIRT7/ELF3/miR-144 pathway in esophageal squamous cell carcinoma // Clin. Exp. Metastasis. 2022. V. 39. № 4. P. 661–677. https://doi.org/10.1007/s10585-022-10171-w
  33. Ma N., Li S., Zhang Q. et al. Long non-coding RNA GAS5 inhibits ovarian cancer cell proliferation via the control of microRNA-21 and SPRY2 expression // Exp. Theor. Med. 2018. V. 16. № 1. P. 73–82. https://doi.org/10.3892/etm.2018.6188
  34. Liu B., Wu S., Ma J. et al. lncRNA GAS5 reverses EMT and tumor stem cell-mediated gemcitabine resistance and metastasis by targeting miR-221/SOCS3 in pancreatic cancer // Mol. Ther. Nucleic Acids. 2018. V. 13. P. 472–482. https://doi.org/10.1016/j.omtn.2018.09.026
  35. Zhu L., Zhou D., Guo T. et al. LncRNA GAS5 inhibits invasion and migration of lung cancer through influencing EMT process // J. Cancer. 2021. V. 12. № 11. P. 3291–3298. https://doi.org/10.7150/jca.56218
  36. Yang X., Xie Z., Lei X., Gan R. Long non-coding RNA GAS5 in human cancer // Oncol. Lett. 2020. V. 20. № 3. P. 2587–2594. https://doi.org/10.3892/ol.2020.11809
  37. Ruiz-Bañobre J., Rodriguez-Casanova A., Costa-Fraga N. et al. Noninvasive early detection of colorectal cancer by hypermethylation of the LINC00473 promoter in plasma cell-free DNA // Clin. Epigenetics. 2022. V. 14. № 86. https://doi.org/10.1186 s13148-022-01302-x

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Comparison of methylation levels of six dnRNA genes (GAS5, HOTAIR, LINC00472, LINC00886, SNHG17 and TUG1) in 93 RN tumour samples and in 75 paired samples of conditional normal; calculated using the non-parametric Mann-Whitney criterion, shown as a heat map

Download (262KB)
3. Fig. 2. Increased methylation levels of five dnRNA genes (GAS5, HOTAIR, LINC00472, LINC00886 and TUG1) at later clinical stages (III-IV (51 samples) vs. I-II (42 samples)). On the abscissa axis, disease stage

Download (146KB)
4. Fig. 3. Increased dnRNA gene methylation level (GAS5, HOTAIR, LINC00472, TUG1) in primary tumours of RN patients with metastases (56 samples) compared to tumour samples of patients without metastases (37 samples). Abscissa axis - presence or absence of metastases

Download (138KB)
5. Fig. 4. Expression level change profile of GAS5, HOTAIR, SNHG17 and TUG1 dnRNA expression levels in a sample of 36-53 RN samples relative to the conditional normal range

Download (91KB)
6. Fig. 5. Negative correlation between changes in methylation levels and GAS5 gene expression (in 53 paired RN samples); Spearman's correlation coefficient is plotted: rs = -0.47, p < 0.001

Download (88KB)

Copyright (c) 2024 Russian Academy of Sciences