Hypermethylation in Ovarian Cancer of Long Non-Coding RNA Genes: HOTAIR, GAS5, LINC00472, LINC00886, TUG1
- Authors: Burdyonny A.M.1, Lukina S.S.1, Uroshlev L.A.2, Filippova E.A.1, Pronina I.V.1, Fridman M.V.2, Zhordania K.I.3, Kazubskaya T.P.3, Kushlinsky N.E.3, Loginov V.I.1, Braga E.A.1,4
-
Affiliations:
- Institute of General Pathology and Pathophysiology
- Vavilov Institute of General Genetics of the Russian Academy of Sciences
- Blokhin National Medical Research Center of Oncology
- Research Centre for Medical Genetics
- Issue: Vol 60, No 5 (2024)
- Pages: 83-94
- Section: ГЕНЕТИКА ЧЕЛОВЕКА
- URL: https://rjonco.com/0016-6758/article/view/667269
- DOI: https://doi.org/10.31857/S0016675824050063
- EDN: https://elibrary.ru/CJJFFC
- ID: 667269
Cite item
Abstract
Recently, more and more data have been accumulating indicating the role of long non-coding RNAs (lncRNAs) in the regulation of biological processes in cells, as well as in the mechanisms of cancer development and progression. Aberrant methylation of promoter regions of both protein genes and lncRNA genes can disrupt their expression and functional activity. Using bioinformatics databases, six lncRNA genes (GAS5, HOTAIR, LINC00472, LINC00886, SNHG17 and TUG1) with CpG islands, differentially expressed and presumably hypermethylated in tumors of patients with ovarian cancer (OC) were selected. A statistically significant (p < 0.05) increase in the methylation level in tumours was demonstrated in a sample of 93 OC specimens using methylation-specific real-time PCR assay. Moreover, for the genes LINC00472, LINC00886, SNHG17 and TUG1, hypermethylation in OC was detected for the first time. 5 genes (except SNHG17) showed a further increase in methylation levels at a more advanced stage, and 4 genes (except SNHG17 and LINC00886) showed a significant association with metastasis. Using real-time RT-PCR, differential changes in the expression level of the GAS5, HOTAIR, SNHG17 and TUG1 genes and a significant correlation of methylation with expression for the GAS5 gene were shown. Thus, hypermethylation associated with the progression and/or development of OC was detected for six lncRNA genes, which is important for elucidating the epigenetic processes involved in the pathogenesis of OC and can be used as new biomarkers of OC.
Keywords
Full Text

About the authors
A. M. Burdyonny
Institute of General Pathology and Pathophysiology
Author for correspondence.
Email: burdennyy@gmail.com
Russian Federation, Moscow
S. S. Lukina
Institute of General Pathology and Pathophysiology
Email: burdennyy@gmail.com
Russian Federation, Moscow
L. A. Uroshlev
Vavilov Institute of General Genetics of the Russian Academy of Sciences
Email: burdennyy@gmail.com
Russian Federation, Moscow
E. A. Filippova
Institute of General Pathology and Pathophysiology
Email: burdennyy@gmail.com
Russian Federation, Moscow
I. V. Pronina
Institute of General Pathology and Pathophysiology
Email: burdennyy@gmail.com
Russian Federation, Moscow
M. V. Fridman
Vavilov Institute of General Genetics of the Russian Academy of Sciences
Email: burdennyy@gmail.com
Russian Federation, Moscow
K. I. Zhordania
Blokhin National Medical Research Center of Oncology
Email: burdennyy@gmail.com
Russian Federation, Moscow
T. P. Kazubskaya
Blokhin National Medical Research Center of Oncology
Email: burdennyy@gmail.com
Russian Federation, Moscow
N. E. Kushlinsky
Blokhin National Medical Research Center of Oncology
Email: burdennyy@gmail.com
Russian Federation, Moscow
V. I. Loginov
Institute of General Pathology and Pathophysiology
Email: burdennyy@gmail.com
Russian Federation, Moscow
E. A. Braga
Institute of General Pathology and Pathophysiology; Research Centre for Medical Genetics
Email: eleonora10_45@mail.ru
Russian Federation, Moscow; Moscow
References
- Каприн А.Д., Старинский В.В., Шахзадова А.О. Злокачественные новообразования в России в 2021 году (заболеваемость и смертность) // М.: МНИОИ им. П.А. Герцена – филиал ФГБУ “НМИЦ радиологии” Минздрава России, 2022. 252 с.
- Vogell A., Evans M.L. Cancer screening in women // Obstet. Gynecol. Clin. North. Am. 2019. V. 46. № 3. P. 485–499. https://doi.org/10.1016/j.ogc.2019.04.007
- Wei J.W., Huang K., Yang C., Kang C.S. Non-coding RNAs as regulators in epigenetics (Review) // Oncol. Rep. 2017. V. 37. № 1. P. 3–9. https://doi.org/10.3892/or.2016.5236
- Hombach S., Kretz M. Non-coding RNAs: Classification, Biology and Functioning // Adv. Exp. Med. Biol. 2016. V. 937. P. 3–17. https://doi.org/10.1007/978-3-319-42059-2_1
- Baek D., Villén J., Shin C. et al. The impact of microRNAs on protein output // Nature. 2008. V. 455. № 7209. P. 64–71. https://doi.org/10.1038/nature07242
- Sanchez Calle A., Kawamura Y., Yamamoto Y. et al. Emerging roles of long non-coding RNA in cancer // Cancer Sci. 2018. V. 109. № 7. P. 2093–2100. https://doi.org/10.1111/cas.13642
- Буре И.В., Кузнецова Е.Б., Залетаев Д.В. Длинные некодирующие РНК и их роль в онкогенезе // Мол. Биология 2018. Т. 52. № 6. С. 907–920. https://doi.org/10.1134/S0026898418060034.
- Zhang X., Wang W., Zhu W. et al. Mechanisms and functions of long non-coding RNAs at multiple regulatory levels // Int. J. Mol. Sci. 2019. V. 20. № 22. https://doi.org/10.3390/ijms20225573
- Moutinho C., Esteller M. MicroRNAs and epigenetics // Adv. Cancer Res. 2017. V. 135. P. 189–220. https://doi.org/10.1016/bs.acr.2017.06.003
- Ma L., Li C., Yin H. et al. The echanism of DNA methylation and miRNA in breast cancer // Int. J. Mol. Sci. 2023. V. 24. № 11. https://doi.org/10.3390/ijms24119360.
- Sheng X., Li J., Yang L. et al. Promoter hypermethylation influences the suppressive role of maternally expressed 3, a long non-coding RNA, in the development of epithelial ovarian cancer // Oncol. Rep. 2014. V. 32. № 1. P. 277–285. https://doi.org/10.3892/or.2014.3208
- Gokulnath P., de Cristofaro T., Manipur I. et al. Long non-coding RNA HAND2-AS1 acts as a tumor suppressor in high-grade serous ovarian carcinoma // Int. J. Mol. Sci. 2020. V. 21. № 11. https://doi.org/10.3390/ijms21114059
- Di Fiore R., Suleiman S., Drago-Ferrante R. et al. LncRNA MORT (ZNF667-AS1) in cancer – is there a possible role in gynecological malignancies? // Int. J. Mol. Sci. 2021. V. 22. № 15. https://doi.org/10.3390/ijms22157829
- Бурденный А.М., Филиппова Е.А., Иванова Н.А. и др. Гиперметилирование генов новых длинных некодирующих РНК в опухолях яичников и метастазах: двойственный эффект // Бюлл. Эксп. Биол. Мед. 2021. Т. 171. № 3. С. 370–374. https://doi.org/10.1007/s10517-021-05230-3
- Zhang W., Klinkebiel D., Barger C.J. et al. Global DNA hypomethylation in epithelial ovarian cancer: Passive demethylation and association with genomic instability // Cancers (Basel). 2020. V. 12. № 3. https://doi.org/10.3390/cancers12030764
- Klinkebiel D, Zhang W, Akers SN et al. DNA methylome analyses implicate fallopian tube epithelia as the origin for high-grade serous ovarian cancer // Mol Cancer Res. 2016. V. 14. № 9. P. 787–794. https://doi.org/10.1158/1541-7786.MCR-16-0097
- Pronina I.V., Loginov V.I., Burdennyy A.M. et al. DNA methylation contributes to deregulation of 12 cancer-associated microRNAs and breast cancer progression // Gene. 2017. V. 604. P. 1–8. https://doi.org/10.1016/j.gene.2016.12.018
- Pronina I.V., Uroshlev L.A., Moskovtsev A.A. et al. Dysregulation of lncRNA–miRNA–mRNA interactome as a marker of metastatic process in ovarian cancer // Biomedicines. 2022. V. 10. № 4. https://doi.org/10.3390/biomedicines10040824
- Tang Z., Kang B., Li C. et al. GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis // Nucl. Ac. Res. 2019. V. 47. № W1. P. W556–W560. https://doi.org/10.1093/nar/gkz430
- Zhang N., Wang A.Y., Wang X.K. et al. GAS5 is downregulated in gastric cancer cells by promoter hypermethylation and regulates adriamycin sensitivity // Eur. Rev. Med. Pharmacol. Sci. 2016. V. 20. № 15. P. 3199–3205
- Zhang Y.J., Xie R., Jiang J. et al. 5-Aza-dC suppresses melanoma progression by inhibiting GAS5 hypermethylation // Oncol. Rep. 2022. V. 48. № 1. https://doi.org/10.3892/or.2022.8334
- Селезнева Ал. Д., Филиппова Е.А., Селезнева Ан. Д. и др. Гиперметилирование группы генов длинных некодирующих РНК в развитии и прогрессии рака молочной железы // Бюлл. Эксп. Биол. и Мед. 2022. Т. 173. № 6. С. 754–758.
- Wang W., Yu S., Li W. et al. Silencing of lncRNA SNHG17 inhibits the tumorigenesis of epithelial ovarian cancer through regulation of miR-485-5p/AKT1 axis // Biochem. Biophys. Res. Commun. 2022. V. 637. P. 117–126. https://doi.org/10.1016/j.bbrc.2022.10.091
- Dong Q., Long X., Cheng J. et al. LncRNA GAS5 suppresses ovarian cancer progression by targeting the miR-96-5p/PTEN axis // Ann. Transl. Med. 2021. V. 9. № 24. https://doi.org/10.21037/atm-21-6134
- Lin G., Wu T., Gao X. et al. Research Progress of Long Non-Coding RNA GAS5 in Malignant Tumors // Front Oncol. 2022. V. 12. № 846497. https://doi.org/10.3389/fonc.2022.846497
- Teschendorff A.E., Lee S.H., Jones A. HOTAIR and its surrogate DNA methylation signature indicate carboplatin resistance in ovarian cancer // Genome Med. 2015. V. 7. № 108. https://doi.org/10.1186/s13073-015-0233-4
- Shen X., Hu X., Mao J. et al. The long noncoding RNA TUG1 is required for TGF-β/TWIST1/EMT-mediated metastasis in colorectal cancer cells // Cell. Death. Dis. 2020. V. 11. № 1. № 65. https://doi.org/10.1038/s41419-020-2254-1
- Kuang D., Zhang X., Hua S. et al. Long non-coding RNA TUG1 regulates ovarian cancer proliferation and metastasis via affecting epithelial-mesenchymal transition. // Exp. Mol. Pathol. 2016. V. 101. № 2. P. 267–273. https://doi.org/10.1016/j.yexmp.2016.09.008
- Shen Y., Wang Z., Loo L.W. et al. LINC00472 expression is regulated by promoter methylation and associated with disease-free survival in patients with grade 2 breast cancer // Breast Cancer Res. Treat. 2015. V. 154. № 3. P. 473–482. https://doi.org/10.1007/s10549-015-3632-8
- Tsai K.W., Tsai C.Y., Chou N.H. et al. Aberrant DNA hypermethylation silenced LncRNA expression in gastric cancer // Anticancer Res. 2019. V. 39. № 10. P. 5381–5391. https://doi.org/10.21873/anticanres.13732
- Lan L., Cao H., Chi W. et al. Aberrant DNA hypermethylation-silenced LINC00886 gene accelerates malignant progression of laryngeal carcinoma // Pathol. Res. Pract. 2020. V. 216. № 4. https://doi.org/10.1016/j.prp.2020.152877
- Dong Z., Yang L., Lu J. et al. Downregulation of LINC00886 facilitates epithelial-mesenchymal transition through SIRT7/ELF3/miR-144 pathway in esophageal squamous cell carcinoma // Clin. Exp. Metastasis. 2022. V. 39. № 4. P. 661–677. https://doi.org/10.1007/s10585-022-10171-w
- Ma N., Li S., Zhang Q. et al. Long non-coding RNA GAS5 inhibits ovarian cancer cell proliferation via the control of microRNA-21 and SPRY2 expression // Exp. Theor. Med. 2018. V. 16. № 1. P. 73–82. https://doi.org/10.3892/etm.2018.6188
- Liu B., Wu S., Ma J. et al. lncRNA GAS5 reverses EMT and tumor stem cell-mediated gemcitabine resistance and metastasis by targeting miR-221/SOCS3 in pancreatic cancer // Mol. Ther. Nucleic Acids. 2018. V. 13. P. 472–482. https://doi.org/10.1016/j.omtn.2018.09.026
- Zhu L., Zhou D., Guo T. et al. LncRNA GAS5 inhibits invasion and migration of lung cancer through influencing EMT process // J. Cancer. 2021. V. 12. № 11. P. 3291–3298. https://doi.org/10.7150/jca.56218
- Yang X., Xie Z., Lei X., Gan R. Long non-coding RNA GAS5 in human cancer // Oncol. Lett. 2020. V. 20. № 3. P. 2587–2594. https://doi.org/10.3892/ol.2020.11809
- Ruiz-Bañobre J., Rodriguez-Casanova A., Costa-Fraga N. et al. Noninvasive early detection of colorectal cancer by hypermethylation of the LINC00473 promoter in plasma cell-free DNA // Clin. Epigenetics. 2022. V. 14. № 86. https://doi.org/10.1186 s13148-022-01302-x
Supplementary files
