Search for ethnospecific risk markers for the development of paranoid schizophrenia in bashkirs based on the results of a genome-wide association analysis

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Schizophrenia is now known to be a multifactorial disease in which both genetic and environmental factors play a role. In recent years, mainly through the use of genome-wide association studies (GWAS), many molecular genetic processes have been identified that increase susceptibility to schizophrenia. The aim of this study was to study genetic risk factors for the development of schizophrenia in a genome-wide association analysis (GWAS) in Bashkirs from the Republic of Bashkortostan. The studied sample consisted of 139 patients with paranoid schizophrenia and 204 healthy individuals. Whole genome genotyping of DNA samples was carried out on the PsychChip biochip, which included 610,000 single nucleotide polymorphic variants (SNPs).

全文:

受限制的访问

作者简介

A. Gareeva

Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences; Kemerovo State University; Russian Medical Academy of Continuing Professional Education of the Ministry of Health of Russia

编辑信件的主要联系方式.
Email: annagareeva@yandex.ru
俄罗斯联邦, Ufa, 450054; Kemerovo, 650000; Moscow, 125993

参考

  1. Wang J., Liu J., Li S.et al. Genetic regulatory and biological implications of the 10q24.32 schizophrenia risk locus // Brain. 2023. V. 146. № 4. P.1403‒1419. https://doi.org/10.1093/brain/awac352
  2. Dennison C.A., Legge S.E., Pardiñas A.F., Walters J. Genome-wide association studies in schizophrenia: Recent advances, challenges and future perspective // Schizophr. Res. 2020. V. 217. P. 4‒12. https://doi.org/10.1016/j.schres.2019.10.048
  3. O’Donovan M.C., Craddock N., Norton N. et al. Molecular genetics of schizophrenia collaboration. identification of loci associated with schizophrenia by genome-wide association and follow-up // Nat. Genet. 2008. V. 40. № 9. P. 1053‒1055. https://doi.org/10.1038/ng.201. PMID: 18677311
  4. Ripke S., Neale B.M., Corvin A. et al. Biological insights from 108 schizophrenia-associated genetic loci // Nature. 2014. V. 511. № 7510. P. 421‒427. https://doi.org/10.1038/nature13595
  5. Lam M., Chen C.Y., Li Z. et al. Comparative genetic architectures of schizophrenia in East Asian and European populations // Nat. Genet. 2019. V. 51. № 12. P. 1670‒1678. https://doi.org/10.1038/s41588-019-0512-x
  6. Trubetskoy V., Pardiñas A.F., Qi T. et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia // Nature. 2022 V. 604. № 7906. P. 502‒508. https://doi.org/10.1038/s41586-022-04434-5
  7. Purcell S., Neale B., Todd-Brown K. et al. PLINK: A toolset for whole-genome association and population-based linkage analysis // Am. J. Hum. Genet. 2007. V. 81. № 3. P. 559‒575. https://doi.org/10.1086/519795
  8. Гареева А.Э. Полногеномное ассоциативное исследование риска развития шизофрении в Республике Башкортостан // Генетика. 2023. Т. 59. № 8. С. 954‒963. https://doi.org/10.31857/S0016675823080076
  9. Benjamini Y., Drai D., Elmer G., Kafkafi N., Golani I. Controlling the false discovery rate in behavior genetics research // Behav. Brain Res. 2001. V. 125. № 1-2. P. 279‒284. https://doi.org/10.1016/s0166-4328(01)00297-2
  10. Abecasis G.R., Burt R.A., Hall D. et al. Genomewide scan in families with schizophrenia from the founder population of Afrikaners reveals evidence for linkage and uniparental disomy on chromosome 1 // Am. J. Hum. Genet. 2004. V. 74. № 3. P. 403‒417. https://doi.org/10.1086/381713
  11. Escamilla M.A., Ontiveros A., Nicolini H. et al. A genome-wide scan for schizophrenia and psychosis susceptibility loci in families of Mexican and Central American ancestry // Am. J. Med. Genet. 2007.V. 144B. № 2. P. 193‒199. https://doi.org/10.1002/ajmg.b.30411
  12. Greenwood T.A., Swerdlow N.R., Gur R.E. et al. Genome-wide linkage analyses of 12 endophenotypes for schizophrenia from the Consortium on the Genetics of Schizophrenia// Am. J. Psychiatry. 2013. V. 170. № 5. P. 521‒532. https://doi.org/10.1176/appi.ajp.2012.12020186
  13. Greenwood T.A., Lazzeroni L.C., Calkins M.E. et al. Genetic assessment of additional endophenotypes from the Consortium on the Genetics of Schizophrenia Family Study // Schizophr. Res. 2016. V. 170. № 1. P. 30‒40. https://doi.org/10.1016/j.schres.2015.11.008
  14. Wang L., Chen H., Tang J. et al. Peptidylarginine deiminase and Alzheimer’s disease // J. Alzheimers Dis. 2022. V. 85. № 2. P. 473‒484. https://doi.org/10.3233/JAD-215302
  15. Bradford C.M., Ramos I., Cross A.K. et al. Localisation of citrullinated proteins in normal appearing white matter and lesions in the central nervous system in multiple sclerosis // J. Neuroimmunol. 2014. V. 273. № 1-2. P. 85‒95. https://doi.org/10.1016/j.jneuroim.2014.05.007
  16. Watanabe Y., Nunokawa A., Kaneko N. et al. A two-stage case-control association study of PADI2 with schizophrenia // J. Hum. Genet. 2009. V. 54. № 7. P. 430‒432. https://doi.org/10.1038/jhg.2009.52
  17. Falcão A.M., Meijer M., Scaglione A. et al. PAD2-Mediated citrullination contributes to efficient oligodendrocyte differentiation and myelination // Cell Rep. 2019. V. 27. № 4. P. 1090‒1102. https://doi.org/10.1016/j.celrep.2019.03.108

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Graphical representation of the results of the genome-wide association analysis of 395,832 SNPs with paranoid schizophrenia in Bashkirs (Manhattanplot). The X-axis shows the chromosomal localization of the SNPs, and the Y-axis shows the negative decimal logarithm of the p-value significance level.

下载 (506KB)

版权所有 © Russian Academy of Sciences, 2024