Environmental factors and cardiovascular diseases
- Authors: Chaulin A.M.1,2, Duplyakov D.V.1,2
-
Affiliations:
- Samara State Medical University
- Samara regional clinical cardiology dispensary
- Issue: Vol 100, No 3 (2021)
- Pages: 223-228
- Section: ENVIRONMENTAL HYGIENE
- Published: 15.04.2021
- URL: https://rjonco.com/0016-9900/article/view/639406
- DOI: https://doi.org/10.47470/0016-9900-2021-100-3-223-228
- ID: 639406
Cite item
Full Text
Abstract
Introduction. New advances in the diagnosis and treatment of cardiovascular diseases (CVD), as practice shows, are not able to significantly improve the statistical indicators of morbidity and mortality of CVD. This fact indicates that there are additional factors and mechanisms that are important to consider, both for prevention and for the most optimal management of patients. Recently, the relationship between environmental and lifestyle factors with CVD has been actively studied. However, despite understanding the relationship between environmental factors and various diseases, including CVD, the mechanisms by which specific factors increase or decrease the risk of developing CVD are not yet fully understood, and a number of studies are contradictory.
The aim of our work was to generalize existing data on the impact of such critical environmental factors as air pollution and solar insolation on the cardiovascular system, as well as to comprehensively discuss the mechanisms by which these environmental factors can participate in the development and progression of CVD. To achieve our work’s goal, we analyzed modern foreign literature using the PubMed database.
Conclusion. According to numerous experimental and clinical studies, air pollution and solar insolation deficiency play an essential role in developing CVD and the aggravation of patients with various CVD (atherosclerosis, hypertension, coronary heart disease, heart failure, myocardial infarction, and stroke). Thus, air pollution and lack of solar insolation can be considered as critical risk factors for CVD. Future research should focus on the study and establishment of specific pathogenetic mechanisms by which environmental factors affect the cardiovascular system’s health to develop effective treatment and prevention measures.
About the authors
Aleksey M. Chaulin
Samara State Medical University; Samara regional clinical cardiology dispensary
Author for correspondence.
Email: alekseymichailovich22976@gmail.com
ORCID iD: 0000-0002-2712-0227
MD, post-graduate student, assistant of the department of the Samara State Medical University, Samara, 443079, Russian Federation; doctor Samara regional clinical cardiology dispensary, Samara, 443070, Russian Federation.
e-mail: alekseymichailovich22976@gmail.com
Russian FederationDmitry V. Duplyakov
Samara State Medical University; Samara regional clinical cardiology dispensary
Email: noemail@neicon.ru
ORCID iD: 0000-0002-6453-2976
Russian Federation
References
- Yakushin S.S., Filippov E.V. Prevention of cardiovascular diseases is a healthy lifestyle strategy. Vrach. 2011; (9): 2–7. (in Russian)
- Chaulin A.M., Karslyan L.S., Grigor’eva E.V., Nurbaltaeva D.A., Duplyakov D.V. Clinical and diagnostic value of cardiac markers in human biological fluids. Kardiologiya. 2019; 59(11): 66–75. https://doi.org/10.18087/cardio.2019.11.n414 (in Russian)
- Bazdyrev E.D., Barbarash O.L. Ecology and cardiovascular diseases. Ekologiya cheloveka. 2014; (5): 53–9. (in Russian)
- Arkhipovskiy V.L. Cardiovascular pathology: prevalence, main risk factors. Ekologiya cheloveka. 2007; (7): 20–5. (in Russian)
- Almetwally A.A., Bin-Jumah M., Allam A.A. Ambient air pollution and its influence on human health and welfare: an overview. Environ. Sci. Pollut. Res. Int. 2020; 27(20): 24815–30. https://doi.org/10.1007/s11356-020-09042-2
- Hartung T. Toxicology for the twenty-first century. Nature. 2009; 460(7252): 208–12. https://doi.org/10.1038/460208a
- Wilkening K.E., Barrie L.A., Engle M. Atmospheric science. trans-Pacific air pollution. Science. 2000; 290(5489): 65–7. https://doi.org/10.1126/science.290.5489.65
- Lelieveld J., Evans J.S., Fnais M., Giannadaki D., Pozzer A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature. 2015; 525(7569): 367–71. https://doi.org/10.1038/nature15371
- Caiazzo F., Ashok A., Waitz I.A., Yim S.H., Barrett S.R. Air pollution and early deaths in the United States. Part I: Quantifying the impact of major sectors in 2005. Atmos. Environ. 2013; 79: 198–208. https://doi.org/10.1016/j.atmosenv.2013.05.081
- Cosselman K.E., Navas-Acien A., Kaufman J.D. Environmental factors in cardiovascular disease. Nat. Rev. Cardiol. 2015; 12(11): 627–42. https://doi.org/10.1038/nrcardio.2015.152
- Bhatnagar A. Environmental cardiology: studying mechanistic links between pollution and heart disease. Circ. Res. 2006; 99(7): 692–705. https://doi.org/10.1161/01.RES.0000243586.99701.cf
- Gold D.R., Mittleman M.A. New insights into pollution and the cardiovascular system: 2010 to 2012. Circulation. 2013; 127(18): 1903–13. https://doi.org/10.1161/CIRCULATIONAHA.111.064337
- Puett R.C., Hart J.E., Suh H., Mittleman M., Laden F. Particulate matter exposures, mortality, and cardiovascular disease in the health professionals follow-up stud. Environ. Health Perspect. 2011; 119(8): 1130–5. https://doi.org/10.1289/ehp.1002921
- Pope C.A. 3rd., Bhatnagar A., McCracken J.P., Abplanalp W., Conklin D.J., O’Toole T. Exposure to fine particulate air pollution is associated with endothelial injury and systemic inflammation. Circ. Res. 2016; 119(11): 1204–14. https://doi.org/10.1161/CIRCRESAHA.116.309279
- Bauer M., Moebus S., Mohlenkamp S., Dragano N., Nonnemacher M., Fuchsluger M., et al. Urban particulate matter air pollution is associated with subclinical atherosclerosis: results from the HNR (Heinz Nixdorf Recall) study. J. Am. Coll. Cardiol. 2010; 56(22): 1803–8. https://doi.org/10.1016/j.jacc.2010.04.065
- Hoffmann B., Moebus S., Dragano N., Stang A., Mohlenkamp S., Schmermund A., et al. Chronic residential exposure to particulate matter air pollution and systemic inflammatory markers. Environ. Health Perspect. 2009; 117(8): 1302–8. https://doi.org/10.1289/ehp.0800362
- Kingsley S.L., Eliot M.N., Whitsel E.A., Wang Y., Coull B.A., Hou L., et al. Residential proximity to major roadways and incident hypertension in post-menopausal women. Environ. Res. 2015; 142: 522–8. https://doi.org/10.1016/j.envres.2015.08.002
- Tonne C., Melly S., Mittleman M., Coull B., Goldberg R., Schwartz J. A case-control analysis of exposure to traffic and acute myocardial infarction. Environ. Health Perspect. 2007; 115(1): 53–7. https://doi.org/10.1289/ehp.9587
- Wilker E.H., Mostofsky E., Lue S.H., Gold D., Schwartz J., Wellenius G.A., et al. Residential proximity to high-traffic roadways and poststroke mortality. J. Stroke Cerebrovasc. Dis. 2013; 22(8): e366–72. https://doi.org/10.1016/j.jstrokecerebrovasdis.2013.03.034
- Bhatnagar A. Cardiovascular pathophysiology of environmental pollutants. Am. J. Physiol. Heart Circ. Physiol. 2004; 286: H479–85. https://doi.org/10.1152/ajpheart.00817.2003
- Conklin D.J., Barski O.A., Lesgards J.F., Juvan P., Rezen T., Rozman D., et al. Acrolein consumption induces systemic dyslipidemia and lipoprotein modification. Toxicol. Appl. Pharmacol. 2010; 243(1): 1–12. https://doi.org/10.1016/j.taap.2009.12.010
- Conklin D.J., Haberzettl P., Prough R.A., Bhatnagar A. Glutathione-S-transferase P protects against endothelial dysfunction induced by exposure to tobacco smoke. Am. J. Physiol. Heart Circ. Physiol. 2009; 296(5): H1586–97. https://doi.org/10.1152/ajpheart.00867.2008
- Chaulin A.M., Grigor’eva Yu.V., Duplyakov D.V. Comboridity of chronic obstructive pulmonary disease and cardiovascular diseases: general factors, pathophysiological mechanisms and clinical significance. Klinicheskaya praktika. 2020; 11(1): 112–21. https://doi.org/10.17816/clinpract21218 (in Russian)
- Rao X., Zhong J., Maiseyeu A., Gopalakrishnan B., Villamena F.A., Chen L.C., et al. CD36-dependent 7-ketocholesterol accumulation in macrophages mediates progression of atherosclerosis in response to chronic air pollution exposure. Circ. Res. 2014; 115(9): 770–80. https://doi.org/10.1161/CIRCRESAHA.115.304666
- Haberzettl P., O‘Toole T.E., Bhatnagar A., Conklin D.J. Exposure to fine particulate air pollution causes vascular insulin resistance by inducing pulmonary oxidative stress. Environ. Health Perspect. 2016; 124(12): 1830–9. https://doi.org/10.1289/EHP212
- Yang L., Lof M., Veierod M.B., Sandin S., Adami H.O., Weiderpass E. Ultraviolet exposure and mortality among women in Sweden. Cancer Epidemiol. Biomarkers Prev. 2011; 20(4): 683–90. https://doi.org/10.1158/1055-9965.EPI-10-0982
- Lindqvist P.G., Epstein E., Nielsen K., Landin-Olsson M., Ingvar C., Olsson H. Avoidance of sun exposure as a risk factor for major causes of death: a competing risk analysis of the Melanoma in Southern Sweden cohort. J. Intern. Med. 2016; 280(4): 375–87. https://doi.org/10.1111/joim.12496
- Donneyong M.M., Taylor K.C., Kerber R.A., Hornung C.A., Scragg R. Is outdoor recreational activity an independent predictor of cardiovascular disease mortality – NHANES III? Nutr. Metab. Cardiovasc. Dis. 2016; 26(8): 735–42. https://doi.org/10.1016/j.numecd.2016.02.008
- Clemens T.L., Adams J.S., Henderson S.L., Holick M.F. Increased skin pigment reduces the capacity of skin to synthesise vitamin D3. Lancet. 1982; 1(8263): 74–6. https://doi.org/10.1016/s0140-6736(82)90214-8
- Alemzadeh R., Kichler J., Babar G., Calhoun M. Hypovitaminosis D in obese children and adolescents: relationship with adiposity, insulin sensitivity, ethnicity, and season. Metabolism. 2008; 57(2): 183–91. https://doi.org/10.1016/j.metabol.2007.08.023
- Cheng S., Massaro J.M., Fox C.S., Larson M.G., Keyes M.J., McCabe E.L., et al. Adiposity, cardiometabolic risk, and vitamin D status: the Framingham Heart Study. Diabetes. 2010; 59(1): 242–8. https://doi.org/10.2337/db09-1011
- Rostand S.G. Ultraviolet light may contribute to geographic and racial blood pressure differences. Hypertension. 1997; 30(2 Pt. 1): 150–6. https://doi.org/10.1161/01.hyp.30.2.150
- Argiles A., Mourad G., Mion C. Seasonal changes in blood pressure in patients with end-stage renal disease treated with hemodialysis. N. Engl. J. Med. 1998; 339(19): 1364–70. https://doi.org/10.1056/NEJM199811053391904
- Lee J.H., O’Keefe J.H., Bell D., Hensrud D.D., Holick M.F. Vitamin D deficiency an important, common, and easily treatable cardiovascular risk factor? J. Am. Coll. Cardiol. 2008; 52(24): 1949–56. https://doi.org/10.1016/j.jacc.2008.08.050
- Bouillon R., Carmeliet G., Verlinden L., van Etten E., Verstuyf A., Luderer H.F., et al. Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr. Rev. 2008; 29(6): 726–76. https://doi.org/10.1210/er.2008-0004
- Wang T.J. Vitamin D and Cardiovascular Disease. Annu Rev Med. 2016; 67: 261–272. https://doi.org/10.1146/annurev-med-051214-025146.
- Pilz S., Verheyen N., Grubler M.R., Tomaschitz A., Marz W. Vitamin D and cardiovascular disease prevention. Nat. Rev. Cardiol. 2016; 13(7): 404–17. https://doi.org/10.1038/nrcardio.2016.73
- Rylova N.V., Zholinskiy A.V. Role of vitamin D in prophylaxis of cardiovascular diseases. Prakticheskaya meditsina. 2020; 18(1): 50–3. https://doi.org/10.32000/2072-1757-2020-1-50-53 (in Russian)
- Kunutsor S.K., Apekey T.A., Steur M. Vitamin D and risk of future hypertension: meta-analysis of 283,537 participants. Eur. J. Epidemiol. 2013; 28(3): 205–21. https://doi.org/10.1007/s10654-013-9790-2
- Autier P., Gandini S. Vitamin D supplementation and total mortality: a meta-analysis of randomized controlled trials. Arch. Intern. Med. 2007; 167(16): 1730–7. https://doi.org/10.1001/archinte.167.16.1730
- Bjelakovic G., Gluud L.L., Nikolova D., Whitfield K., Wetterslev J., Simonetti R.G., et al. Vitamin D supplementation for prevention of mortality in adults. Cochrane Database Syst. Rev. 2014; (1): CD007470. https://doi.org/10.1002/14651858.CD007470.pub3
- Witte K.K., Byrom R., Gierula J., Paton M.F., Jamil H.A., Lowry J.E., et al. Effects of vitamin D on cardiac function in patients with chronic HF: The VINDICATE Study. J. Am. Coll. Cardiol. 2016; 67(22): 2593–603. https://doi.org/10.1016/j.jacc.2016.03.508
- Oplander C., Volkmar C.M., Paunel-Gorgulu A., van Faassen E.E., Heiss C., Kelm M., et al. Whole body UVA irradiation lowers systemic blood pressure by release of nitric oxide from intracutaneous photolabile nitric oxide derivates. Circ. Res. 2009; 105(10): 1031–40. https://doi.org/10.1161/CIRCRESAHA.109.207019
- West M.B., Rokosh G., Obal D., Velayutham M., Xuan Y.T., Hill B.G., et al. Cardiac myocyte-specific expression of inducible nitric oxide synthase protects against ischemia/reperfusion injury by preventing mitochondrial permeability transition. Circulation. 2008; 118(19): 1970–8. https://doi.org/10.1161/CIRCULATIONAHA.108.791533
- Sansbury B.E., Cummins T.D., Tang Y., Hellmann J., Holden C.R., Harbeson M.A., et al. Overexpression of endothelial nitric oxide synthase prevents diet-induced obesity and regulates adipocyte phenotype. Circ. Res. 2012; 111(9): 1176–89. https://doi.org/10.1161/CIRCRESAHA.112.266395
- Geldenhuys S., Hart P.H., Endersby R., Jacoby P., Feelisch M., Weller R.B., et al. Ultraviolet radiation suppresses obesity and symptoms of metabolic syndrome independently of vitamin D in mice fed a high-fat diet. Diabetes. 2014; 63(11): 3759–69. https://doi.org/10.2337/db13-1675
Supplementary files
