Solid solutions CaMo(1−x)WxO4: simulation properties and local environment of ions

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The simulation of CaMo(1–x)WxO4 solid solutions was carried out using the interatomic potential method. The dependences of the unit cell parameters and volume, density, bulk modulus, enthalpy, vibrational entropy and heat capacity on the composition were determined. The temperature dependences of the heat capacity and vibrational entropy were also plotted. The local structure of solid solutions has been studied. Changes in the coordination polyhedra of CaO8 and the tetrahedra of MoO4 and WO4 with varying concentrations of the solid solution were established. It was shown that in intermediate compositions there is additional distortion of all polyhedra, which may be the reason for the improvement in the spectral characteristics of mixed compositions.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Dudnikova

Lomonosov Moscow State University

Хат алмасуға жауапты Автор.
Email: VDudnikova@hotmail.com
Ресей, Moscow, 119991

N. Eremin

Lomonosov Moscow State University

Email: VDudnikova@hotmail.com
Ресей, Moscow, 119991

Әдебиет тізімі

  1. Hu Y., Zhuang W., Ye H. et al. // J. Alloys Compd. 2005. V. 390. P. 226. https://doi.org/10.1016/j.jallcom.2004.07.063
  2. Dixit P., Chauhan V., Kumar P., Pandey P.C. // J. Lumin. 2020. V. 223. 117240. https://doi.org/10.1016/j.jlumin.2020.117240
  3. Johnson L.F. // J. Appl. Phys. 1963. V. 34 (4). P. 897. https://doi.org/10.1063/1.1729557
  4. Zhuang R.Z., Zhang L.Z., Lin Z.B., Wang G.F. // Mat. Res. Innov. 2008. V. 12. P. 62. https://doi.org/10.1179/143307508X304237
  5. Шилова Г.В., Сироткин А.А., Зверев П.Г. // Квантовая электроника. 2019. Т. 49. С. 570.
  6. Campos A.B., Simões A.Z., Longo E. et al. // Appl. Phys. Let. 2007. V. 91. 051923. https://doi.org/10.1063/1.2766856
  7. Mikhailik V.B., Henry S., Kraus H., Solskii I. // Nucl. Instrum. Methods Phys. Res. A. 2007. V. 583. P. 350. https://doi.org/10.1016/j.nima.2007.09.020
  8. Lee S.J., Choi J.H., Danevich F.A. et al. // Astropart. Phys. 2011. V. 34. P. 732. https://doi.org/10.1016/j.astropartphys.2011.01.004
  9. Angloher G., Bucci C., Christ P. et al. // Astropart. Phys. 2005. V. 23. P. 325. https://doi.org/10.1016/j.astropartphys.2005.01.006
  10. Gao H., Wang S., Wang Y. et al. // Colloids Surf. A. Physicochem. Eng. Asp. 2022. V. 642. 128642. https://doi.org/10.1016/j.colsurfa.2022.128642
  11. Han J., McBean C., Wang L. et al. // J. Phys. Chem. C. 2015. V. 119. P 3826. http://dx.doi.org/10.1021/jp512490d
  12. Баковец В.В., Золотова Е.С., Антонова О.В. и др. // ЖТФ. 2016. T. 86. Вып. 12. С. 111. https://doi.org/10.21883/jtf.2016.12.43924.1511
  13. Дудникова В.Б., Антонов Д.И., Жариков Е.В., Еремин Н.Н. // ФТТ. 2022. T. 64. Вып. 11. C. 1741. https://doi.org/10.21883/FTT.2022.11.53328.413
  14. Дудникова В.Б., Жариков Е.В., Еремин Н.Н. // ФТТ. 2019. T. 61. Вып. 4. C. 678. https://doi.org/10.21883/FTT.2019.04.47412.311
  15. Дудникова В.Б., Антонов Д.И., Жариков Е.В., Еремин Н.Н. // Кристаллография. 2023. Т. 68. № 4. С. 536 https://doi.org/10.31857/S0023476122600550
  16. Dudnikova V.B., Zharikov E.V., Eremin N.N. // Mater. Today Commun. 2020. V. 23. 101180. https://doi.org/10.1016/j.mtcomm.2020.101180
  17. Gale J.D. // Z. Kristallogr. 2005. V. 220. P. 552. https://doi.org/10.1524/zkri.220.5.552.65070
  18. Dick B.G., Overhauser A.W. // Phys. Rev. 1958. V. 112. P. 90. https://doi.org/10.1103/PhysRev.112.90
  19. Дудникова В.Б., Антонов Д.И., Жариков Е.В., Еремин Н.Н. // ФТТ. 2022. Т. 64. С. 1452. https://doi.org/10.21883/FTT.2022.10.53089.354
  20. Hazen R.M., Finger L.W., Mariathasan J.W.E. // J. Phys. Chem. Solids. 1985. V. 46. № 2. P. 253. https://doi.org/10.1016/0022-3697(85)90039-3
  21. Александров В.Б., Горбатый Л.В., Илюхин В.В. // Кристаллография 1968. T. 13. C. 512
  22. Урусов В.С., Еремин Н.Н. Атомистическое компьютерное моделирование структуры и свойств неорганических кристаллов и минералов, их дефектов и твердых растворов. M.: ГЕОС, 2012. 428 с.
  23. Ferna´ndez-Gonza´lez A., Andara A., Prieto M. // Cryst. Growth Des. 2007. V. 7. № 3. P. 545. https://doi.org/10.1021/cg0606646
  24. Senyshyn A., Kraus H., Mikhailik V.B. et al. // Phys. Rev. B. 2006. V. 73. 014104. https://doi.org/10.1103/PhysRevB.73.014104
  25. Weller W.W., King E.G. // U. S. Dept. of the Interior, Bureau of Mines. 1963. 6147.
  26. Morishita M., Kinoshita Y., Houshiyama H. et al. // J. Chem. Thermodynam. 2017. V. 114. P. 30. https://doi.org/10.1016/j.jct.2017.05.021
  27. King E.G., Weller W.W. // U. S. Bur. Mines Rept. Invest. 1961. 5791.
  28. Lyon W.G., Westrum E.F. // J. Chem. Phys. 1968. V. 49. Р. 3374. https://doi.org/10.1063/1.1670609
  29. Senyshyn A., Kraus H., Mikhailik V.B., Yakovyna V. // Phys. Rev. B. 2004. V. 70. 214306. https://doi.org/10.1103/PhysRevB.70.214306

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Dependences on the composition of the solid solution: a, b – unit cell parameters; c – density (r) and volume (V); d – bulk modulus (K) and enthalpy (H); d – vibrational (Svib) and configurational (Sc) entropy; e – heat capacity at constant volume (CV).

Жүктеу (348KB)
3. Fig. 2. Temperature dependences of heat capacity (a) and vibrational entropy (b) for solid solutions CaMo(1–x)WxO4 in comparison with literature data for CaMoO4 and CaWO4.

Жүктеу (175KB)
4. Fig. 3. Histograms of the frequency distribution of interatomic Ca–O distances in CaMo(1–x)WxO4 solid solutions at x = 0.125 (a), 0.5 (b) and 0.938 (c). Dependences of the average distances in A-polyhedra (R) and the dispersion of distances (DR) on the composition of the solid solution (d).

Жүктеу (235KB)
5. Fig. 4. Histograms of the frequency distribution of interatomic W–O distances of CaMo(1–x)WxO4 solid solutions at x = 0.125 (a), 0.5 (b) and 0.938 (c). Dependences of the average distances in WO4 tetrahedra (R) and the dispersion of distances (DR) on the composition of the solid solution (d).

Жүктеу (193KB)
6. Fig. 5. Change in the average B–O distances and the dispersion of distances in the first (R1, DR1) (a) and second (R2, DR2) (b) coordination sphere.

Жүктеу (186KB)

© Russian Academy of Sciences, 2025