Immunization of mice with pVAXrbd DNA vaccine by jet injection induces a stronger immune response and protection against SARS-CoV-2 compared to intramuscular injection via syringe

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

During the COVID-19 pandemic, it became clear that to ensure global health security, it is essential to have a developed platform that can be used to quickly develop a safe, low-cost, effective vaccine. DNA vaccines have several advantages over other platforms, including rapid development and ease of production. They are more stable than mRNA vaccines. Unlike viral vector-based vaccines, DNA vaccines do not induce anti-vector immunity. One of the disadvantages of DNA vaccines is their relatively low immunogenicity. This problem can be solved using jet injection. Here, we evaluated and confirmed the efficiency of an inexpensive, simple, and safe method for delivering the naked DNA vaccine pVAXrbd encoding the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein using a spring-loaded jet injector. Based on the results of histological analysis, optimal condition, were determined that ensure low tissue trauma in laboratory animals upon administration of pVAXrbd. An optimized immunization protocol for BALB/c mice was used to compare the immunogenicity of pVAXrbd with two different administration schemes: using a jet injector under the skin and into the adjacent muscle layers or intramuscularly using a syringe with a needle. Mice immunized with ‘naked’ pVAX-rbd were shown to produce high levels of specific virus-neutralizing antibodies. The vaccine also induced a strong RBD-specific T-cell response. As shown by quantitative PCR analysis of viral RNA, vaccinated mice infected with the Gamma variant of SARS-CoV-2 developed a protective immune response; moreover, it was more pronounced in animals to which the DNA-vaccine was administered using a jet injector compared to those immunized intramuscularly. Thus, the introduction of a DNA-vaccine using jet injection effectively activates both types of the immune response and leads to a decrease in the viral load. Jet injection is a promising method for delivering DNA vaccines, characterized by low cost, simplicity, technological administration and minimal pain for the patient.

全文:

受限制的访问

作者简介

D. Kisakov

State Scientific Center of Virology and Biotechnology “Vector”, Rospotrebnadzor

编辑信件的主要联系方式.
Email: def_2003@mail.ru

Center for Genomic Research of the World Level of Biosafety and Technological Independence, Federal Scientific and Technical Program for Development of Genetic Technologies

俄罗斯联邦, Koltsovo, Novosibirsk Region, 630559

M. Borgoyakova

State Scientific Center of Virology and Biotechnology “Vector”, Rospotrebnadzor

Email: def_2003@mail.ru

Center for Genomic Research of the World Level of Biosafety and Technological Independence, Federal Scientific and Technical Program for Development of Genetic Technologies

俄罗斯联邦, Koltsovo, Novosibirsk Region, 630559

L. Kisakova

State Scientific Center of Virology and Biotechnology “Vector”, Rospotrebnadzor

Email: def_2003@mail.ru

Center for Genomic Research of the World Level of Biosafety and Technological Independence, Federal Scientific and Technical Program for Development of Genetic Technologies

俄罗斯联邦, Koltsovo, Novosibirsk Region, 630559

E. Starostina

State Scientific Center of Virology and Biotechnology “Vector”, Rospotrebnadzor

Email: def_2003@mail.ru

Center for Genomic Research of the World Level of Biosafety and Technological Independence, Federal Scientific and Technical Program for Development of Genetic Technologies

俄罗斯联邦, Koltsovo, Novosibirsk Region, 630559

O. Pyankov

State Scientific Center of Virology and Biotechnology “Vector”, Rospotrebnadzor

Email: def_2003@mail.ru

Center for Genomic Research of the World Level of Biosafety and Technological Independence, Federal Scientific and Technical Program for Development of Genetic Technologies

俄罗斯联邦, Koltsovo, Novosibirsk Region, 630559

А. Zaykovskaya

State Scientific Center of Virology and Biotechnology “Vector”, Rospotrebnadzor

Email: def_2003@mail.ru

Center for Genomic Research of the World Level of Biosafety and Technological Independence, Federal Scientific and Technical Program for Development of Genetic Technologies

俄罗斯联邦, Koltsovo, Novosibirsk Region, 630559

O. Taranov

State Scientific Center of Virology and Biotechnology “Vector”, Rospotrebnadzor

Email: def_2003@mail.ru

Center for Genomic Research of the World Level of Biosafety and Technological Independence, Federal Scientific and Technical Program for Development of Genetic Technologies

俄罗斯联邦, Koltsovo, Novosibirsk Region, 630559

E. Ivleva

State Scientific Center of Virology and Biotechnology “Vector”, Rospotrebnadzor

Email: def_2003@mail.ru

Center for Genomic Research of the World Level of Biosafety and Technological Independence, Federal Scientific and Technical Program for Development of Genetic Technologies

俄罗斯联邦, Koltsovo, Novosibirsk Region, 630559

N. Rudometova

State Scientific Center of Virology and Biotechnology “Vector”, Rospotrebnadzor

Email: def_2003@mail.ru

Center for Genomic Research of the World Level of Biosafety and Technological Independence, Federal Scientific and Technical Program for Development of Genetic Technologies

俄罗斯联邦, Koltsovo, Novosibirsk Region, 630559

V. Yakovlev

State Scientific Center of Virology and Biotechnology “Vector”, Rospotrebnadzor

Email: def_2003@mail.ru

Center for Genomic Research of the World Level of Biosafety and Technological Independence, Federal Scientific and Technical Program for Development of Genetic Technologies

俄罗斯联邦, Koltsovo, Novosibirsk Region, 630559

Е. Tigeeva

State Scientific Center of Virology and Biotechnology “Vector”, Rospotrebnadzor

Email: def_2003@mail.ru

Center for Genomic Research of the World Level of Biosafety and Technological Independence, Federal Scientific and Technical Program for Development of Genetic Technologies

俄罗斯联邦, Koltsovo, Novosibirsk Region, 630559

M. Azaev

State Scientific Center of Virology and Biotechnology “Vector”, Rospotrebnadzor

Email: def_2003@mail.ru

Center for Genomic Research of the World Level of Biosafety and Technological Independence, Federal Scientific and Technical Program for Development of Genetic Technologies

俄罗斯联邦, Koltsovo, Novosibirsk Region, 630559

I. Belyakov

Moscow Financial-Industrial University “Synergy”

Email: def_2003@mail.ru
俄罗斯联邦, Moscow, 129090

A. Rudometov

State Scientific Center of Virology and Biotechnology “Vector”, Rospotrebnadzor

Email: def_2003@mail.ru

Center for Genomic Research of the World Level of Biosafety and Technological Independence, Federal Scientific and Technical Program for Development of Genetic Technologies

俄罗斯联邦, Koltsovo, Novosibirsk Region, 630559

A. Ilyichev

State Scientific Center of Virology and Biotechnology “Vector”, Rospotrebnadzor

Email: def_2003@mail.ru

Center for Genomic Research of the World Level of Biosafety and Technological Independence, Federal Scientific and Technical Program for Development of Genetic Technologies

俄罗斯联邦, Koltsovo, Novosibirsk Region, 630559

L. Karpenko

State Scientific Center of Virology and Biotechnology “Vector”, Rospotrebnadzor

Email: def_2003@mail.ru

Center for Genomic Research of the World Level of Biosafety and Technological Independence, Federal Scientific and Technical Program for Development of Genetic Technologies

俄罗斯联邦, Koltsovo, Novosibirsk Region, 630559

参考

  1. Echaide M., Chocarro de Erauso L., Bocanegra A., Blanco E., Kochan G., Escors D. (2023) mRNA vaccines against SARS-CoV-2: advantages and caveats. Int. J. Mol. Sci. 24, 5944.
  2. Li L., Petrovsky N. (2016) Molecular mechanisms for enhanced DNA vaccine immunogenicity. Expert Rev. Vaccines. 15, 313–329.
  3. Bazhan S.I., Antonets D.V., Starostina E.V., Ilyicheva T.N., Kaplina O.N., Marchenko V.Y., Volkova O.Y., Bakulina A.Y., Karpenko L.I. (2022) In silico design of influenza a virus artificial epitope-based T-cell antigens and the evaluation of their immunogenicity in mice. J. Biomol. Struct. Dyn. 40, 3196–3212.
  4. Karpenko L.I., Bazhan S.I., Eroshkin A.M., Antonets D.V., Chikaev A.N., Ilyichev A.A. (2018) Artificial epitope-based immunogens in HIV-vaccine design. In: Advances in HIV and AIDS Control. Ed. S. Okware. IntechPOpen, 205‒225. https://doi.org/10.5772/intechopen.77031
  5. Hanke T. (2014) Conserved immunogens in prime-boost strategies for the next-generation HIV-1 vaccines. Expert Opin. Biol. Ther. 14, 601–616.
  6. Sardesai N.Y., Weiner D.B. (2011) Electroporation delivery of DNA vaccines: prospects for success. Curr. Opin. Immunol. 23, 421–429.
  7. Ledesma-Feliciano C., Chapman R., Hooper J.W., Elma K., Zehrung D., Brennan M.B., Spiegel E.K. (2023) Improved DNA vaccine delivery with needle-free injection systems. Vaccines (Basel). 11, 280.
  8. Chang C., Sun J., Hayashi H., Suzuki A., Sakaguchi Y., Miyazaki H., Nishikawa T., Nakagami H., Yamashita K., Kaneda Y. (2019) Stable immune response induced by intradermal DNA vaccination by a novel needleless pyro-drive jet injector. AAPS Pharm. Sci. Tech. 21, 19.
  9. Conforti A., Marra E., Palombo F., Roscilli G., Ravà M., Fumagalli V., Muzi A., Maffei M., Luberto L., Lione L., Salvatori E., Compagnone M., Pinto E., Pavoni E., Bucci F., Vitagliano G., Stoppoloni D., Pacello M.L., Cappelletti M., Ferrara F.F., D’Acunto E., Chiarini V., Arriga R., Nyska A., Di Lucia P., Marotta D., Bono E., Giustini L., Sala E., Perucchini C., Paterson J., Ryan K.A., Challis A.R., Matusali G., Colavita F., Caselli G., Criscuolo E., Clementi N., Mancini N., Groß R., Seidel A., Wettstein L., Münch J., Donnici L., Conti M., De Francesco R., Kuka M., Ciliberto G., Castilletti C., Capobianchi M.R., Ippolito G., Guidotti L.G., Rovati L., Iannacone M., Aurisicchio L. (2022) COVID-eVax, an electroporated DNA vaccine candidate encoding the SARS-CoV-2 RBD, elicits protective responses in animal models. Mol. Ther. 30, 311–326.
  10. Chiarella P., Massi E., De Robertis M., Sibilio A., Parrella P., Fazio V.M., Signori E. (2008) Electroporation of skeletal muscle induces danger signal release and antigen-presenting cell recruitment independently of DNA vaccine administration. Expert Opin. Biol. Ther. 8, 1645–1657.
  11. Lee S.H., Danishmalik S.N., Sin J.I. (2015) DNA vaccines, electroporation and their applications in cancer treatment. Hum. Vaccin. Immunother. 11, 1889–1900.
  12. Teixeira L., Medioni J., Garibal J., Adotevi O., Doucet L., Durey M.D., Ghrieb Z., Kiladjian J.J., Brizard M., Laheurte C., Wehbe M., Pliquet E., Escande M., Defrance R., Culine S., Oudard S., Wain-Hobson S., Doppler V., Huet T., Langlade-Demoyen P. (2020) A first-in-human phase I study of INVAC-1, an optimized human telomerase DNA vaccine in patients with advanced solid tumors. Clin. Cancer Res. 26, 588–597.
  13. Bashorun A.O., Badjie Hydara M., Adigweme I., Umesi A., Danso B., Johnson N., Sambou N.A., Fofana S., Kanu F.J., Jeyaseelan V., Verma H., Weldon W.C., Oberste M.S., Sutter R.W., Jeffries D., Wathuo M., Mach O., Clarke E. (2022) Intradermal administration of fractional doses of the inactivated poliovirus vaccine in a campaign: a pragmatic, open-label, non-inferiority trial in the Gambia. Lancet Glob. Health. 10, 257–268.
  14. Daly C., Molodecky N.A., Sreevatsava M., Belayneh A.D., Chandio S.A., Partridge J., Shaikh A., Laghari M., Agbor J., Safdar R.M., Bullo U.F., Malik S.M., Mahamud A. (2020) Needle-free injectors for mass administration of fractional dose inactivated poliovirus vaccine in Karachi, Pakistan: A survey of caregiver and vaccinator acceptability. Vaccine. 38, 1893–1898.
  15. Yousafzai M.T., Saleem A.F., Mach O., Baig A., Sutter R.W., Zaidi A.K.M. (2017) Feasibility of conducting intradermal vaccination campaign with inactivated poliovirus vaccine using Tropis intradermal needle free injection system, Karachi, Pakistan. Heliyon. 3, 00395.
  16. Grodeland G., Fredriksen A.B., Løset G., Vikse E., Fugger L., Bogen B. (2016) Antigen targeting to human HLA class II molecules increases efficacy of DNA vaccination. J. Immunol. 197, 3575–3585.
  17. Mucker E.M., Golden J.W., Hammerbeck C.D., Kishimori J.M., Royals M., Joselyn M.D., Ballantyne J., Nalca A., Hooper J.W. (2022) A nucleic acid-based orthopoxvirus vaccine targeting the vaccinia virus L1, A27, B5, and A33 proteins protects rabbits against lethal rabbitpox virus aerosol challenge. J. Virol. 96, 0150421.
  18. Momin T., Kansagra K., Patel H., Sharma S., Sharma B., Patel J., Mittal R., Sanmukhani J., Maithal K., Dey A., Chandra H., Rajanathan C.T., Pericherla H.P., Kumar P., Narkhede A., Parmar D. (2021) Safety and immunogenicity of a DNA SARS-CoV-2 vaccine (ZyCoV-D): results of an open-label, non-randomized phase I part of phase I/II clinical study by intradermal route in healthy subjects in India. EClinicalMedicine. 38, 101020.
  19. Mallapaty S. (2021) India’s DNA COVID vaccine is a world first – more are coming. Nature. 597, 161–162.
  20. Eroshenko N., Gill T., Keaveney M.K., Church G.M., Trevejo J.M., Rajaniemi H. (2020) Implications of antibody-dependent enhancement of infection for SARS-CoV-2 countermeasures. Nat. Biotechnol. 38, 789–791.
  21. Lee W.S., Wheatley A.K., Kent S.J., DeKosky B.J. (2020) Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat. Microbiol. 5, 1185–1191.
  22. Thomas S., Smatti M.K., Alsulaiti H., Zedan H.T., Eid A.H., Hssain A.A., Abu Raddad L.J., Gentilcore G., Ouhtit A., Althani A.A., Nasrallah G.K., Grivel J.C., Yassine H.M. (2024) Antibody-dependent enhancement (ADE) of SARS-CoV-2 in patients exposed to MERS-CoV and SARS-CoV-2 antigens. J. Med. Virol. 96, 29628.
  23. Dai L., Zheng T., Xu K., Han Y., Xu L., Huang E., An Y., Cheng Y., Li S., Liu M., Yang M., Li Y., Cheng H., Yuan Y., Zhang W., Ke C., Wong G., Qi J., Qin C., Yan J., Gao G.F. (2020) A universal design of betacoronavirus vaccines against COVID-19, MERS, and SARS. Cell. 182, 722–733.
  24. Tai W., He L., Zhang X., Pu J., Voronin D., Jiang S., Zhou Y., Du L. (2020) Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol. Immunol. 17, 613–620.
  25. Wu Y., Wang F., Shen C., Peng W., Li D., Zhao C., Li Z., Li S., Bi Y., Yang Y., Gong Y., Xiao H., Fan Z., Tan S., Wu G., Tan W., Lu X., Fan C., Wang Q., Liu Y., Zhang C., Qi J., Gao G.F., Gao F., Liu L. (2020) A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2. Science. 368, 1274–1278.
  26. Zost S.J., Gilchuk P., Case J.B., Binshtein E., Chen R.E., Nkolola J.P., Schäfer A., Reidy J.X., Trivette A., Nargi R.S., Sutton R.E., Suryadevara N., Martinez D.R., Williamson L.E., Chen E.C., Jones T., Day S., Myers L., Hassan A.O., Kafai N.M., Winkler E.S., Fox J.M., Shrihari S., Mueller B.K., Meiler J., Chandrashekar A., Mercado N.B., Steinhardt J.J., Ren K., Loo Y.M., Kallewaard N.L., McCune B.T., Keeler S.P., Holtzman M.J., Barouch D.H., Gralinski L.E., Baric R.S., Thackray L.B., Diamond M.S., Carnahan R.H., Crowe J.E. (2020) Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature. 584, 443–449.
  27. Erasmus J.H., Khandhar A.P., O’Connor M.A., Walls A.C., Hemann E.A., Murapa P., Archer J., Leventhal S., Fuller J.T., Lewis T.B., Draves K.E., Randall S., Guerriero K.A., Duthie M.S., Carter D., Reed S.G., Hawman D.W., Feldmann H., Gale M., Veesler D., Berglund P., Fuller D.H. (2020) An Alphavirus-derived replicon RNA vaccine induces SARS-CoV-2 neutralizing antibody and T cell responses in mice and nonhuman primates. Sci. Transl. Med. 12(555), eabc9396. https://doi.org/10.1126/scitranslmed.abc9396
  28. Borgoyakova M.B., Karpenko L.I., Rudometov A.P., Volosnikova E.A., Merkuleva I.A., Starostina E.V., Zadorozhny A.M., Isaeva A.A., Nesmeyanova V.S., Shanshin D.V., Baranov K.O., Volkova N.V., Zaitsev B.N., Orlova L.A., Zaykovskaya A.V., Pyankov O.V., Danilenko E.D., Bazhan S.I., Shcherbakov D.N., Taranin A.V., Ilyichev A.A. (2022) Self-assembled particles combining SARS-CoV-2 RBD protein and RBD DNA vaccine induce synergistic enhancement of the humoral response in mice. Int. J. Mol. Sci. 23, 2188.
  29. Боргоякова М.Б., Карпенко Л.И., Рудомётов А.П., Шаньшин Д.В., Исаева А.А., Несмеянова В.С., Волкова Н.В., Беленькая С.В., Мурашкин Д.Е., Щербаков Д.Н., Волосникова Е.А., Старостина Е.В., Орлова Л.А., Данильченко Н.В., Зайковская А.В., Пьянков О.В., Ильичёв А.А. (2021) Иммуногенные свойства ДНК-конструкции, кодирующей рецепторсвязывающий домен белка шипа SARS-CoV-2. Молекуляр. биология. 55(6), 987‒998.
  30. Kisakov D.N., Kisakova L.A., Borgoyakova M.B., Starostina E.V., Taranov O.S., Ivleva E.K., Pyankov O.V., Zaykovskaya A.V., Shcherbakov D.N., Rudometov A.P., Rudometova N.B., Volkova N.V., Gureev V.N., Ilyichev A.A., Karpenko L.I. (2022) Optimization of in vivo electroporation conditions and delivery of DNA vaccine encoding SARS-CoV-2 RBD using the determined protocol. Pharmaceutics. 14, 2259.
  31. Рудометова Н.Б., Щербаков Д.Н., Карпенко Л.И. (2022). Получение и характеризация псевдовирусов SARS-CoV-2. Медицинский академический журнал. 22, 249–253.
  32. Neerukonda S.N., Vassell R., Herrup R., Liu S., Wang T., Takeda K., Yang Y., Lin T.L., Wang W., Weiss C.D. (2021) Establishment of a well-characterized SARS-CoV-2 lentiviral pseudovirus neutralization assay using 293T cells with stable expression of ACE2 and TMPRSS2. PLoS One. 16, 0248348.
  33. Зайковская А.В., Гладышева А.В., Карташов М.Ю., Таранов О.С., Овчинникова А.С., Шиповалов А.В., Пьянков О.В. (2022) Изучение в условиях in vitro биологических свойств штаммов коронавируса SARS-CoV-2, относящихся к различным генетическим вариантам. Проблемы особо опасных инфекций. 1, 94–100. https://doi.org/10.21055/0370-1069-2022-1-94-100
  34. Шиповалов А.В., Кудров Г.А., Томилов А.А., Боднев С.А., Болдырев Н.Д., Овчинникова А.С., Зайковская А.В., Таранов О.С., Пьянков О.В., Максютов Р.А. (2022) Изучение восприимчивости линий мышей к вызывающим обеспокоенность вариантам вируса SARS-CoV-2. Проблемы особо опасных инфекций. 1, 148–155. https://doi.org/10.21055/0370-1069-2022-1-148-155
  35. Dolskiy A.A., Bodnev S.A., Nazarenko A.A., Smirnova A.M., Pyankova O.G., Matveeva A.K., Grishchenko I.V., Tregubchak T.V., Pyankov O.V., Ryzhikov A.B., Gavrilova E.V., Maksyutov R.A., Yudkin D.V. (2020) Deletion of BST2 cytoplasmic and transmembrane N-terminal domains results in SARS-CoV, SARS-CoV-2, and influenza virus production suppression in a Vero cell line. Front. Mol. Biosci. 7, 616–798.
  36. Боровиков В.П. (2003) STATISTICA. Искусство анализа данных на компьютере. Санкт-Петербург: Питер, 688 с.
  37. Kisakov D.N., Kisakova L.A., Sharabrin S.V., Yakovlev V.A., Tigeeva E.V., Borgoyakova M.B., Starostina E.V., Zaikovskaya A.V., Rudometov A.P., Rudometova N.B., Karpenko L.I., Ilyichev A.A. (2024) Delivery of experimental mRNA vaccine encoding the RBD of SARS-CoV-2 by jet injection. Bull. Exp. Biol. Med. 176, 776–780.
  38. Kazi A., Kakde A.P., Khaire M.P., Chhajed P.N. (2018) Needle free injection device: the painless technology. MIT Int. J. Pharm. Sci. 4, 113–118.
  39. Dukare M.V., Saudagar R.B. (2018) Needle-free injection system. Int. J. Curr. Pharm. Res. 10, 17–24.
  40. Weniger B.G., Papania M.J. (2013) Alternative vaccine delivery methods. Vaccines. 6, 1200–1231. 10.1016/B978-1-4557-0090-5.00063-X' target='_blank'>https://doi: 10.1016/B978-1-4557-0090-5.00063-X
  41. Mitragotri S. (2006) Current status and future prospects of needle-free liquid jet injectors. Nat. Rev. Drug Discov. 5, 543–548.
  42. Han H.S., Hong J.Y., Kwon T.R., Lee S.E., Yoo K.H., Choi S.Y., Kim B.J. (2021) Mechanism and clinical applications of needle-free injectors in dermatology: Literature review. J. Cosmet. Dermatol. 20, 3793–3801.
  43. Canter J., Mackey K., Good L.S., Roberto R.R., Chin J., Bond W.W., Alter M.J., Horan J.M. (1990) An outbreak of hepatitis B associated with jet injections in a weight reduction clinic. Arch. Intern. Med. 150, 1923–1927.
  44. Khobragade A., Bhate S., Ramaiah V., Deshpande S., Giri K., Phophle H., Supe P., Godara I., Revanna R., Nagarkar R., Sanmukhani J., Dey A., Rajanathan T.M.C., Kansagra K., Koradia P.; ZyCoV-D phase 3 Study Investigator Group. (2022) Efficacy, safety, and immunogenicity of the DNA SARS-CoV-2 vaccine (ZyCoV-D): the interim efficacy results of a phase 3, randomised, double-blind, placebo-controlled study in India. Lancet. 399, 1313–1321.
  45. Alberer M., Gnad-Vogt U., Hong H.S., Mehr K.T., Backert L., Finak G., Gottardo R., Bica M.A., Garofano A., Koch S.D., Fotin-Mleczek M., Hoerr I., Clemens R., von Sonnenburg F. (2017) Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet. 390, 1511–1520.
  46. Alamri S.S., Alluhaybi K.A., Alhabbab R.Y., Basabrain M., Algaissi A., Almahboub S., Alfaleh M.A., Abujamel T.S., Abdulaal W.H., ElAssouli M.-Z., Alharbi R.H., Hassanain M., Hashem A.M. (2021) Synthetic SARS-CoV-2 spike-based DNA vaccine elicits robust and long-lasting Th1 humoral and cellular immunity in mice. Front. Microbiol. 12, 727455.
  47. Gaudinski M.R., Houser K.V., Morabito K.M., Hu Z., Yamshchikov G., Rothwell R.S., Berkowitz N., Mendoza F., Saunders J.G., Novik L., Hendel C.S., Holman L.A., Gordon I.J., Cox J.H., Edupuganti S., McArthur M.A., Rouphael N.G., Lyke K.E., Cummings G.E., Sitar S., Bailer R.T., Foreman B.M., Burgomaster K., Pelc R.S., Gordon D.N., DeMaso C.R., Dowd K.A., Laurencot C., Schwartz R.M., Mascola J.R., Graham B.S., Pierson T.C., Ledgerwood J.E., Chen G.L. (2018) Safety, tolerability, and immunogenicity of two Zika virus DNA vaccine candidates in healthy adults: randomised, open-label, phase 1 clinical trials. Lancet. 391, 552–562.
  48. Chapman R., van Diepen M., Galant S., Kruse E., Margolin E., Ximba P., Hermanus T., Moore P., Douglass N., Williamson A.L., Rybicki E. (2020) Immunogenicity of HIV-1 vaccines expressing chimeric envelope glycoproteins on the surface of Pr55 Gag virus-like particles. Vaccines (Basel). 8, 54.
  49. Jackson L.A., Rupp R., Papadimitriou A., Wallace D., Raanan M., Moss K.J. (2018) A phase 1 study of safety and immunogenicity following intradermal administration of a tetravalent dengue vaccine candidate. Vaccine. 36, 3976–3983.
  50. Bakari M., Aboud S., Nilsson C., Francis J., Buma D., Moshiro C., Aris E.A., Lyamuya E.F., Janabi M., Godoy-Ramirez K., Joachim A., Polonis V.R., Bråve A., Earl P., Robb M., Marovich M., Wahren B., Pallangyo K., Biberfeld G., Mhalu F., Sandström E. (2011) Broad and potent immune responses to a low dose intradermal HIV-1 DNA boosted with HIV-1 recombinant MVA among healthy adults in Tanzania. Vaccine. 29, 8417–8428.
  51. Beckett C.G., Tjaden J., Burgess T., Danko J.R., Tamminga C., Simmons M., Wu S.J., Sun P., Kochel T., Raviprakash K., Hayes C.G., Porter K.R. (2011) Evaluation of a prototype dengue-1 DNA vaccine in a phase 1 clinical trial. Vaccine. 29, 960–968.
  52. McAllister L., Anderson J., Werth K., Cho I., Copeland K., Le Cam Bouveret N., Plant D., Mendelman P.M., Cobb D.K. (2014) Needle-free jet injection for administration of influenza vaccine: a randomised non-inferiority trial. Lancet. 384, 674–681.
  53. Petrovsky N., Honda-Okubo Y., Royals M., Bragg K., Sajkov D. (2013) A randomized controlled study to assess the immunogenicity and tolerability of a 2012 trivalent seasonal inactivated influenza vaccine administered via a disposable syringe jet injector device versus a traditional pre-filled syringe and needle. Trials Vaccinol. 2, 39–44.
  54. Bavdekar A., Oswal J., Ramanan P.V., Aundhkar C., Venugopal P., Kapse D., Miller T., McGray S., Zehrung D., Kulkarni P.S., SII MMR author group (2018) Immunogenicity and safety of measles-mumps-rubella vaccine delivered by disposable-syringe jet injector in India: a randomized, parallel group, non-inferiority trial. Vaccine. 36, 1220–1226.
  55. Scheiblhofer S., Weiss R., Thalhamer J. (2006) Genetic vaccination approaches against malaria based on the circumsporozoite protein. Wien Klin. Wochenschr. 118, 9–17.
  56. Elbadry H.O., Awad S.M., Hammouda H.E. (2023) Comparison between jet injector and traditional needle syringe during infiltration anesthesia in pediatric patients. Mansoura J. Dentistry. 10, 178‒182.
  57. Rane Y.S., Thomas J.B., Fisher P., Broderick K.E., Marston J.O. (2021) Feasibility of using negative pressure for jet injection applications. J. Drug Deliv. Sci. Technol. 63, 102395.
  58. Schlich M., Casula L., Musa A., Pireddu R., Pitzanti G., Cardia M.C., Valenti D., Marceddu S., Fadda A.M., De Luca M.A., Sinico C., Lai F. (2022) Needle-free jet injectors and nanosuspensions: exploring the potential of an unexpected pair. Pharmaceutics. 14, 1085.
  59. Sonoda J., Mizoguchi I., Inoue S., Watanabe A., Sekine A., Yamagishi M., Miyakawa S., Yamaguchi N., Horio E., Katahira Y., Hasegawa H., Hasegawa T., Yamashita K., Yoshimoto T. (2023) A promising needle-free pyro-drive jet injector for augmentation of immunity by intradermal injection as a physical adjuvant. Int. J. Mol. Sci. 24, 9094.
  60. Nishikawa T., Chang C.Y., Tai J.A., Hayashi H., Sun J., Torii S., Ono C., Matsuura Y., Ide R., Mineno J., Sasai M., Yamamoto M., Nakagami H., Yamashita K. (2022) Immune response induced in rodents by anti-CoVid19 plasmid DNA vaccine via pyro-drive jet injector inoculation. Immunol. Med. 45, 251–264.
  61. Jay A., Kwilas S.A., Josleyn M., Ricks K., Hooper J.W. (2023) Humoral immunogenicity of a coronavirus disease 2019 (COVID-19) DNA vaccine in rhesus macaques (Macaca mulatta) delivered using needle-free jet injection. PLoS One. 18, 0275082.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Hematoxylin and eosin stained tissue samples of the quadriceps femoris muscle of the left hind paw of mice from different groups. Tissue samples of 1 mm in size were taken from an animal of the control group (a), from the injection site of saline (b), and from the injection site of pVAXrbd at a dose of 100 μg (c).

下载 (32KB)
3. Fig. 2. Scheme of immunization of BALB/c mice with DNA vaccine pVAXrbd. Designations (here and below): IM – intramuscular, JI – jet injector, VNA – serum virus-neutralizing activity assay.

下载 (31KB)
4. Fig. 3. Analysis of the immune response in mice immunized with pVAXrbd. a – RBD-specific antibody (AB) titers based on ELISA results (see Experimental Section). b – Neutralizing activity of sera was determined on Vero E6 cells infected with the hCoV-19/Australia/VIC01/2020 strain by reducing the CPE of the virus. c – The number of IFN-γ-producing splenocytes was counted by ELISpot. d – Photographs of ELISpot wells: top row – splenocytes without peptide stimulation, bottom row – stimulated with a peptide mixture or mitogen. d – Quantitative determination of SARS-CoV-2 RNA in 10% lung homogenate of BALB/c mice on day 4 after infection. The results are presented as cycle threshold (Ct) values of real-time PCR. All graphs show median values with interval. Significance was calculated using nonparametric one-way Kruskal-Wallis analysis of variance; *p < 0.05, **p < 0.01.

下载 (73KB)
5. Fig. 4. Scheme of immunization of BALB/c mice with different doses of the pVAXrbd DNA vaccine.

下载 (33KB)
6. Fig. 5. Evaluation of adaptive immunity in mice immunized with different doses of the pVAXrbd plasmid (50, 100, and 200 μg) using a jet injector. a – RBD-specific antibody (AB) titers based on ELISA results. b – Neutralizing activity of sera was determined on Vero E6 cells infected with the hCoV-19/Australia/VIC01/2020 strain by reducing the CPE of the virus. c – Analysis of the neutralizing activity of mouse sera on pseudotyped viruses carrying the hCoV-19/Australia/VIC01/2020 S-glycoprotein on the surface. NT50 – 50% neutralization titer. d – Quantitative determination of SARS-CoV-2 RNA in the lungs of BALB/c mice on day 4 after infection. The results are presented as cycle threshold (Ct) values of real-time PCR. All graphs show median values with interval. Significance was calculated using nonparametric one-way Kruskal–Wallis analysis of variance; *p < 0.05, **p < 0.01, ***p < 0.001.

下载 (52KB)

版权所有 © Russian Academy of Sciences, 2025