Immobilisation of protein macromolecules in biochip cells made of different polymers
- 作者: Shtylev G.F.1, Shishkin I.Y.1, Vasiliskov V.A.1, Barsky V.E.1, Kuznetsova V.E.1, Shershov V.E.1, Polyakov S.A.1, Miftakhov R.A.1, Butvilovskaya V.I.1, Zasedateleva O.A.1, Chudinov A.V.1
-
隶属关系:
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
- 期: 卷 59, 编号 3 (2025)
- 页面: 485-504
- 栏目: СТРУКТУРНО-ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ БИОПОЛИМЕРОВ И ИХ КОМПЛЕКСОВ
- URL: https://rjonco.com/0026-8984/article/view/689633
- DOI: https://doi.org/10.31857/S0026898425030107
- EDN: https://elibrary.ru/PUTEEN
- ID: 689633
如何引用文章
详细
Microarrays with immobilised protein probes are used in the analysis of protein samples. Selection of materials for biochip fabrication, functionalisation of the carrier surface, obtaining ordered cell matrices, immobilisation of protein molecular probes in cells, achieving high sensitivity of protein sample analysis are the key tasks of biochip technology. The following methodological approaches were used in this work. To preserve affinity properties, protein probes were immobilised in biochip cells under ‘soft’ conditions, after cell preparation. In order to achieve high concentration and prostanse accessibility, probes were immobilised in three-dimensional cells obtained from dynamically mobile brush polymers fixed on the substrate only at one end. The cell matrix was obtained on the substrate surface by photoinduced radical polymerisation of monomers with reactive chemical groups, photolithographically, according to the photomask template. We carried out a comparative analysis of polymer brush structures prepared on a polybutylene terephthalate substrate by photoinduced radical polymerisation. These structures consisted of links of one or more monomers. The influence of the method of activation of reactive groups on the polymer chains on the efficiency of immobilisation of molecular protein probes in the cells was investigated. The influence of the composition of acrylate monomers, from which the cells were obtained, on the specific binding of response proteins to protein probes immobilised in biochip cells was studied. A new method of biochip fabrication was developed. Substrates made of photoactive polybutylene terephthalate were coated with a thin layer of photoactive polymer polyvinyl acetate. The cells, which were obtained by photopolymerisation of monomers on the modified substrate, did not degrade or peel from the surface in aqueous solutions. The substrates coated with polyvinyl acetate do not adsorb proteins. Streptavidin and human immunoglobulins were used as models of protein probes, and biotinylated goat immunoglobulins and goat antibodies against human immunoglobulins were used as response proteins. The study found that polymers with irregular structure promoted higher concentration of protein probes and their uniform distribution within the cells, which positively influenced the efficiency of specific binding to response proteins. Biochips with cells of their brush polymers on black polybutylene terephthalate substrate appear promising for further improvement for use in immunofluorescence analysis of protein targets for the development of ‘lab-on-a-chip’ microanalysis technologies.
全文:

作者简介
G. Shtylev
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: chud@eimb.ru
俄罗斯联邦, Moscow, 119991
I. Shishkin
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: chud@eimb.ru
俄罗斯联邦, Moscow, 119991
V. Vasiliskov
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: chud@eimb.ru
俄罗斯联邦, Moscow, 119991
V. Barsky
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: chud@eimb.ru
俄罗斯联邦, Moscow, 119991
V. Kuznetsova
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: chud@eimb.ru
俄罗斯联邦, Moscow, 119991
V. Shershov
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: chud@eimb.ru
俄罗斯联邦, Moscow, 119991
S. Polyakov
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: chud@eimb.ru
俄罗斯联邦, Moscow, 119991
R. Miftakhov
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: chud@eimb.ru
俄罗斯联邦, Moscow, 119991
V. Butvilovskaya
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: chud@eimb.ru
俄罗斯联邦, Moscow, 119991
O. Zasedateleva
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: chud@eimb.ru
俄罗斯联邦, Moscow, 119991
A. Chudinov
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: chud@eimb.ru
俄罗斯联邦, Moscow, 119991
参考
- Лысов Ю.П., Флорентьев В.Л., Хорлин А.А., Храпко К.Р., Шик В.В., Мирзабеков А.Д. (1988) Определение нуклеотидной последовательности ДНК гибридизацией с олигонуклеотидами. Новый метод. ДАН СССР. 303(6), 1508.
- Khrapko K.P., Ivanov I.B., Lysov Yu.P., Khorlin A.A., Shick V.V., Floreniev V.L., Mirzabekov A.D. (1989) An oligonucleotide hybridization approach to DNA sequencing. FEBS Lett. 256, 118–122.
- Drmanac R., Labat I., Brukner I., Crkvenjakov R. (1989) Sequencing of megabase plus DNA by hybridization: theory of the method. Genomics. 4(2), 114–128.
- Southern E.M., Maskos U., Elder J.K. (1992) Analyzing and comparing nucleic acid sequences by hybridization to arrays of oligonucleotides: evaluation using experimental models. Genomics. 13(4), 1008–1017.
- Aparna G.M., Tetala K.K.R. (2023) Recent progress in development and application of DNA, protein, peptide, glycan, antibody, and aptamer microarrays. Biomolecules. 13(4), 602.
- Gryadunov D., Dementieva E., Mikhailovich V., Nasedkina T., Rubina A., Savvateeva E., Fesenko E., Chudinov A., Zimenkov D., Kolchinsky A., Zasedatelev A. (2011) Gel-based microarrays in clinical diagnostics in Russia. Exp. Rev. Mol. Diagn. 11, 839–853.
- Varachev V., Shekhtman A., Guskov D., Rogozhin D., Zasedatelev A., Nasedkina T. (2024) Diagnostics of IDH1/2 mutations in intracranial chondroid tumors: comparison of molecular genetic methods and immunohistochemistry. Diagnostics. 14, 200.
- Brittain W.J., Brandstetter T., Prucker O., Rühe J. (2019) The surface science of microarray generation — a critical inventory. ACS Appl. Materials Interfaces. 11(43), 39397–39409.
- Rother D., Sen T., East D., Bruce I.J. (2011) Silicon, silica and its surface patterning/activation with alkoxy- and amino-silanes for nanomedical applications. Nanomedicine. 6(2), 281–300.
- Akkoyun A., Bilitewski U. (2002) Optimisation of glass surfaces for optical immunosensors. Biosensors Bioelectronics. 17, 655–664.
- Zhi Z.L., Powell A.K., Turnbull J.E. (2006) Fabrication of carbohydrate microarrays on gold surfaces: direct attachment of nonderivatized oligosaccharides to hydrazide-modified self-assembled monolayers. Analyt. Chem. 78(14), 4786–4793.
- Afanassiev V., Hanemann V., Wölfl S. (2000) Preparation of DNA and protein micro arrays on glass slides coated with an agarose film. Nucl. Acids Res. 28(12), E66.
- Dufva M., Petronis S., Jensen L.B., Krag C., Christensen C.B.V. (2004) Characterization of an inexpensive, nontoxic, and highly sensitive microarray substrate. BioTechniques. 37(2), 286–296.
- Straub A.J., Scherag F.D., Kim H.I., Steiner M.-S., Brandstetter T., Rühe J. (2021) “CHicable” and “Clickable” copolymers for network formation and surface modification. Langmuir. 37(21), 6510–6520.
- Damin F., Galbiati S., Gagliardi S., Cereda C., Dragoni F., Fenizia C., Savasi V., Sola L., Chiari M. (2021) CovidArray: a microarray based assay with high sensitivity for the detection of SARS-CoV-2 in nasopharyngeal swabs. Sensors. 21, 2490.
- Zhou Y., Andersson O., Lindberg P., Liedberg B. (2004) Protein microarrays on carboxymethylated dextran hydrogels: immobilization, characterization and application. Microchim. Acta. 147, 21–30.
- Rubina A.Y., Pan’kov S.V., Dementieva E.I., Pen’kov D.N., Butygin A.V., Vasiliskov V.A., Chudinov A.V., Mikheikin A.L., Mikhailovich V.M., Mirzabekov A.D. (2004) Hydrogel drop microchips with immobilized DNA: properties and methods for large-scale production. Anal. Biochem. 325, 92–106.
- Shaskolskiy B., Kandinov I., Kravtsov D., Vinokurova A., Gorshkova S., Filippova M., Kubanov A., Solomka V., Deryabin D., Dementieva E., Gryadunov D. (2021) Hydrogel droplet microarray for genotyping antimicrobial resistance determinants in Neisseria gonorrhoeae isolates. Polymers. 13, 3889.
- Savvateeva E.N., Yukina M.Y., Nuralieva N.F., Filippova M.A., Gryadunov D.A., Troshina E.A. (2021) Multiplex autoantibody detection in patients with autoimmune polyglandular syndromes. Int. J. Mol. Sci. 22, 5502.
- Rendl M., Bönisch A., Mader A., Schuh K., Prucker O., Brandstetter T., Rühe J. (2011) Simple one-step process for immobilization of biomolecules on polymer substrates based on surface-attached polymer networks. Langmuir. 27, 6116–6123.
- Stumpf A., Brandstetter T., Hübner J., Rühe J. (2019) Hydrogel based protein biochip for parallel detection of biomarkers for diagnosis of a Systemic Inflammatory Response Syndrome (SIRS) in human serum. PLoS One. 14(12), e0225525.
- Zubtsov D.A., Savvateeva E.N., Rubina A. Yu., Pan’kov S.V., Konovalova E.V., Moiseeva O.V., Chechetkin V.R., Zasedatelev A.S. (2007) Comparison of surface and hydrogel-based protein microchips. Anal. Biochem. 368, 205–213.
- Ma H., Davis R.H., Bowman C.N. (2000) A novel sequential photoinduced living graft polymerization. Macromolecules. 33, 331–335.
- Pu Q., Oyesanya O., Thompson B., Liu S., Alvarez J.C. (2007) On-chip micropatterning of plastic (Cyclic Olefin Copolymer, COC) microfluidic channels for the fabrication of biomolecule microarrays using photografting methods. Langmuir. 23, 1577–1583.
- Spitsyn M.A., Kuznetsova V.E., Shershov V.E., Emelyanova М.А., Guseinov T.O., Lapa S.A., Nasedkina T.V., Zasedatelev A.S., Chudinov A.V. (2017) Synthetic route to novel zwitterionic pentamethine indocyanine fluorophores with various substitutions. Dyes Pigments. 147, 199–210.
- Lysov Y., Barsky V., Urasov D., Urasov R., Cherepanov A., Mamaev D., Yegorov Y., Chudinov A., Surzhikov S., Rubina A., Smoldovskaya O., Zasedatelev A. (2017) Microarray analyzer based on wide field fluorescent microscopy with laser illumination and a device for speckle suppression. Biomed. Optics Express. 8, 4798–4810.
- Штылев Г.Ф., Шишкин И.Ю., Шершов В.Е., Кузнецова В.Е., Качуляк Д.А., Бутвиловская В.И., Левашова А.И., Василисков В.А., Заседателева О.А., Чудинов А.В. (2024) Иммобилизация белковых зондов на биочипах с ячейками из щеточных полимеров. Биоорган. химия. 50(5), XX–ХX.
- Mueller M., Bandl C., Kern W. (2022) Surface-immobilized photoinitiators for light induced polymerization and coupling reactions. Polumers. 14, 608.
- Trmcic-Cvitas J., Hasan E., Ramstedt M., Li, X., Cooper M.A., Abell C., Huck W.T.S., Gautrot J.E. (2009) Biofunctionalized protein resistant oligo(ethylene glycol)derived polymer brushes as selective immobilization and sensing platforms. Biomacromolecules. 10, 2885–2894.
- Zilio C., Sola L., Damin F., Faggioni L., Chiari M. (2014) Universal hydrophilic coating of thermoplastic polymers currently used in microfluidics. Biomed Microdevices. 16, 107–114.
- Штылев Г.Ф., Шишкин И.Ю., Лапа С.А., Шершов В.Е., Барский В.Е., Поляков С.А., Василисков В.А., Заседателева О.А., Кузнецова В.Е., Чудинов А.В. (2024) Получение активных аминогрупп на поверхности полиэтилентерефталатной пленки и их количественная оценка для технологии биологических микрочипов. Биоорган. химия. 50(5), 665‒671.
- Мифтахов Р.А., Иконникова А.Ю., Василисков В.А., Лапа С.А., Левашова А.И., Кузнецова В.Е., Шершов В.Е., Заседателев А.С., Наседкина Т.В., Чудинов А.В. (2023) Биочип с ячейками из щеточных полимеров с реактивными карбоксильными группами для анализа ДНК. Биоорган. химия. 49(6), 641–648.
- Ogiwara Y., Kanda M., Takumi M., Kubota H. (1981) Photosensitized grafting on polyolefin films in vapor and liquid phases. J. Polym. Sci. Polym. Lett. Ed. 19, 457–462.
补充文件
