Long Bone Morphology and Histology of the Stem Salamander Kulgeriherpeton ultimum (Caudata, Karauridae) from the Lower Cretaceous of Yakutia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The morphology and histological structure of the humerus and femur of the stem karaurid salamander Kulgeriherpeton ultimum Skutstchas et al., 2018, from the Lower Cretaceous Teete locality, Republic of Sakha (Yakutia) is described. The microanatomical and histological structure of K. ultimum is characterized by the presence of a thick compact primary cortex formed by a parallel-fibred bone; the absence (in the humerus) or presence of a small medullary cavity in the middle of the diaphysis; the presence of a medullary cavity expanding toward the epiphyses, which passes in the proximal and distal parts into a complex network of sinuous canals, partially replaced by erosion bays; the presence of primary vascular canals and growth marks in the primary cortex; the presence of remnants of unresorbed cartilage and the Kaschenko’s line; active secondary remodeling with the formation of erosion bays similar to those in large-sized salamanders (other stem karaurid salamanders and cryptobranchids). Skeletochronological analysis of the humerus of K. ultimum showed that at the time of the animal's death, its individual age was 13-16 years, and the absence of a reduction in the distance between cyclic growth marks in the periphyric part of the cortex indicates that it belonged to an actively growing individual that had not reached its maximum possible size. The similarity in the morphology of the humerus and femur of K. ultimum and modern aquatic neotenic salamanders (absence of a dorsal crest on the humerus for the attachment of m. subcoracoscapularis, less high, displaced forward trochanter of femur, shallow ventral fossa (fossa trochanterica) on the femur), as well as the presence of remnants of cartilage and preservation of Kashchenko's line in the internal structure of limb bones confirm conclusions about aquatic life style and neotenic nature of stem karaurid salamanders.

Full Text

Restricted Access

About the authors

P. P. Skutschas

Saint Petersburg State University

Author for correspondence.
Email: p.skutschas@spbu.ru
Russian Federation, Saint Petersburg, 199034

P. G. Saburov

Saint Petersburg State University

Email: p.saburov@spbu.ru
Russian Federation, Saint Petersburg, 199034

A. V. Uliakhin

Borissiak Paleontological Institute, Russian Academy of Sciences

Email: ulyakhin@paleo.ru
Russian Federation, Moscow, 117647

V. V. Kolchanov

Saint Petersburg State University

Email: veniamin.kolchanov@mail.ru
Russian Federation, Saint Petersburg, 199034

References

  1. Гуртовой Н.Н., Матвеев Б.С., Дзержинский Ф.Я. Практическая зоотомия позвоночных. Земноводные. Пресмыкающиеся. М.: Высшая школа, 1978. 407 c.
  2. Ashley-Ross M.A. The Comparative myology of the thigh and crus in the salamanders Ambystoma tigrinum and Dicamptodon tenebrosus // J. Morphol. 1992. V. 211. № 2. P. 147–163.
  3. Caetano M.H., Castanet J. Variability and microevolutionary patterns in Triturus marmoratus from Portugal: age, size, longevity and individual growth // Amphibia-Reptilia. 1993. V. 14. P. 117–129.
  4. Caetano M.H., Castanet J., Francillon H. Détermination de l'âge de Triturus marmoratus marmoratus (Latreille, 1800) du Parc National de Peneda Gerês (Portugal) // Amphibia-Reptilia. 1985. V. 6. P. 117–132.
  5. Canoville A., Laurin M., de Buffrénil V. Quantitative data on bone vascular supply in lissamphibians: comparative and phylogenetic aspects // Zool. J. Linn. Soc. 2018. V. 182. P. 107–128.
  6. De Buffrénil V., Canoville A., Evans S.E., Laurin M. Histological study of karaurids, the oldest known (stem) urodeles // Hist. Biol. 2015. V. 27. № 1. P. 109–114.
  7. De Buffrénil V., Laurin M. Lissamphibia // Vertebrate Skeletal Histology and Paleohistology / Eds. de Buffrénil V., de Ricqlès A.J. Zylberberg L. et al. Boca Raton; L.: CRC Press, 2021. P. 345–362.
  8. Francillon-Vieillot H., de Buffrénil V., Castanet J. et al. Microstructure and mineralization of vertebrate skeletal tissues // Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends. V. 1 / Ed. Carter J.G. N.Y.: Van Nostrand Reinhold, 1990. P. 471–530.
  9. Gee B.M., Haridy Y., Reisz R.R. Histological skeletochronology indicates developmental plasticity in the early Permian stem lissamphibian Doleserpeton annectens // Ecol. and Evol. 2020. V. 10. P. 2153–2169.
  10. Jones M.E.H., Benson R.B.J., Skutschas P. et al. Middle Jurassic fossils document an early stage in salamander evolution // PNAS. 2022. V. 119. № 30. P.1–12.
  11. McHugh J.B. Paleohistology and histovariability of the Permian stereospondyl Rhinesuchus // J. Vertebr. Paleontol. 2014. V. 34. № 1. P. 59–68.
  12. Molnar J.L., Diogo R., Hutchinson J.R., Pierce S.E. Reconstructing pectoral appendicular muscle anatomy in fossil fish and tetrapods over the fins-to-limbs transition // Biol. Rev. Cambr. Phil. Soc. 2018. V. 93. P. 1077–1107.
  13. Molnar J.L., Diogo R., Hutchinson J.R., Pierce S.E. Evolution of hindlimb muscle anatomy across the tetrapod water-to-land transition, including comparisons with forelimb anatomy // Anat. Rec. 2020. V. 303. № 2. P. 218–234.
  14. Rich T.H., Vickers-Rich P., Gangloff R.A. Polar dinosaurs // Science. 2002. V. 295. № 5557. P. 979–980.
  15. Sagor E.S., Ouellet M., Barten E., Green D.M. Skeletochronology and geographic variation in age structure in the wood frog, Rana sylvatica // J. Herpetol. 1998. V. 32. № 4. P. 469–474.
  16. Sanchez S., de Ricqles A., Schoch R., Steyer S. Developmental plasticity of limb bone microstructural organization in Apateon: histological evidence of paedomorphic conditions in branchiosaurs // Evol. & Devel. 2010. V. 12. № 3. P. 315–328.
  17. Skutschas P.P. A relict stem salamander: evidence from the Early Cretaceous of Siberia // Acta Palaeontol. Pol. 2016. V. 61. № 1. P. 119–123.
  18. Skutschas P.P., Kolchanov V.V., Averianov A.O. et al. A new relict stem salamander from the Early Cretaceous of Yakutia, Siberian Russia // Acta Palaeontol. Pol. 2018. V. 63. № 3. P. 519–525.
  19. Skutschas P., Martin T. Cranial anatomy of the stem salamander Kokartus honorarius (Amphibia: Caudata) from the Middle Jurassic of Kyrgyzstan // Zool. J. Linn. Soc. 2011. V. 161. P. 816–838.
  20. Skutschas P.P., Saburov P.G., Boitsova E.A., Kolchanov V.V. Ontogenetic changes in long-bone histology of the cryptobranchid Eoscapherpeton asiaticum (Amphibia: Caudata) from the Late Cretaceous of Uzbekistan // C. R. Palevol. 2019. V. 18. № 3. P. 306–316.
  21. Skutschas P., Stein K. Long bone histology of the stem salamander Kokartus honorarius (Amphibia: Caudata) from the Middle Jurassic of Kyrgyzstan // J. Anat. 2015. V. 226. № 4. P. 334–347.
  22. Smirina E.M. Age determination and longevity in amphibians // Gerontol. 1994. V. 40. P. 133–146.
  23. Tinsley R.C., Tocque K. The population dynamics of a desert anuran, Scaphiopus couchii // Austral. J. Ecol. 1995. V. 20. P. 376–384.
  24. Woodward H.N., Horner J.R., Farlow J.O. Osteohistological evidence for determinate growth in the American alligator // J. Herpetol. 2011. V. 45. № 3. P. 339–342.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Kulgeriherpeton ultimum Skutstchas et al., 2018, 3D reconstruction of the right humerus (specimen ZIN PH 38/246) and reconstruction of the canals of its circulatory system: a – reconstruction of the humerus, view from the medial side; b, c – reconstruction of the circulatory system, view from the medial side; g – reconstruction of the humerus, view from the dorsal side; d, f – reconstruction of the circulatory system, view from the dorsal side; g – reconstruction of the humerus, view from the lateral side with indication of the locations of virtual sections; h, i – reconstruction of the circulatory system, view from the lateral side; k – reconstruction of the humerus, view from the ventral side; l, m – reconstruction of the circulatory system, view from the ventral side; n–r – internal structure of the humerus on virtual sections. Designations: cc – central canal, sc – oblique canals exiting to the bone surface, cm – medullary cavity, cre – ridge for attachment of the extensor muscles of the forearm, crv – ventral ridge, ectp – lateral epicondyle, entp – medial epicondyle, fc – cubital fossa.

Download (120KB)
3. Fig. 2. Kulgeriherpeton ultimum Skutstchas et al., 2018, transverse histological section of the humerus at the level of the middle of the diaphysis (specimen ZIN PH 38/246): a – reconstruction of the humerus, lateral view with the section location indicated; b – section of the humerus in transmitted light; c – section of the humerus in polarized light with the boundaries of the areas shown under high magnification indicated; g, e – sections of the section in polarized light under high magnification. Designations: co – cortex, eb – erosion cavity, oc – osteocytes, slb – secondary lamellar bone, so – secondary osteon, vc – vascular canal. Yellow arrows indicate the lines of growth arrest (LAGs).

Download (146KB)
4. Fig. 3. Kulgeriherpeton ultimum Skutstchas et al., 2018, 3D reconstruction of the right femur (specimen ZIN PH 39/246) and reconstruction of the canals of its circulatory system: a – reconstruction of the femur, ventral view; b, c – reconstruction of the circulatory system, ventral view; g – reconstruction of the femur, anterior view; d, f – reconstruction of the circulatory system, anterior view; g – reconstruction of the femur, dorsal view; h, i – reconstruction of the circulatory system, dorsal view; k – reconstruction of the femur, posterior view with indication of the locations of virtual sections; l, m – reconstruction of the circulatory system, posterior view; n–r – internal structure of the femur on virtual sections. Designations: ctr – trochanter crest, cm – medullary cavity, eb – erosion cavities, ft – ventral fossa, sc – oblique canals exiting onto the bone surface, tr – trochanter.

Download (119KB)
5. Fig. 4. Kulgeriherpeton ultimum Skutstchas et al., 2018, transverse histological section of the femur at the level of the middle of the diaphysis (specimen ZIN PH 39/246): a – reconstruction of the femur, ventral view with section locations indicated, b, c – sections of the femur in polarized light with the boundaries of the sections shown under high magnification indicated; g–i – sections of sections in polarized light under high magnification. Designations: co – cortex, eb – erosion cavity, elb – endostelial lamellar bone, oc – osteocytes, slb – secondary lamellar bone, so – secondary osteon, vc – vascular canal.

Download (123KB)
6. Fig. 5. Kulgeriherpeton ultimum Skutstchas et al., 2018, transverse histological sections of femurs: a–c – specimen ZIN PH 37/246: a – section in the proximal part of the diaphysis in polarized light with the boundaries of the areas shown under high magnification indicated; b, c – section areas in polarized light under high magnification; g, d – specimen ZIN PH 35/246: g – section at the level of the middle of the diaphysis in polarized light with the boundaries of the area shown under high magnification indicated; d – section area in polarized light under high magnification. Designations: car – calcified cartilage, co – cortex, cm – medullary cavity, eb – erosion cavity, elb – endostelial lamellar bone, slb – secondary lamellar bone, Kl – Kashchenko line.

Download (123KB)

Copyright (c) 2024 Russian Academy of Sciences