Abstract
Разработан аналитический алгоритм нахождения частот нелинейных колебаний консервативной системы с двумя степенями свободы вблизи ее устойчивого положения равновесия. Предполагалось, что в системе нет резонансов до четвертого порядка включительно, т. е. отношение частот малых линейных колебаний не равняется единице, двум или трем. В качестве приложения рассмотрена задача о нелинейных колебаниях материальной точки на неподвижной абсолютно гладкой поверхности в однородном поле тяжести; указана оценка меры колмогоровского множества начальных условий, для которых движение точки является условно-периодическим. Рассмотрена также нелинейная консервативная система, в которой отсутствуют резонансы любого порядка. Система представляет собой маятник, образованный двумя скрепленными шарниром тонкими стержнями одинаковой длины и веса. Изучен характер нелинейных колебаний этого маятника в окрестности его устойчивого равновесия на вертикали.