Abstract
Geodynamics in an inhomogeneous 3D-geoenvironment, due to gravitational processes, is characterized by fields of displacement, rotations and deformations. The quantitative and dimensional characteristics of the distribution of these fields are provided by the corresponding stress fields. The results of computational experiments modeling the stress and strain state of two profiles are presented. The distribution of fields in depth is due to density inhomogeneity, one of the internal sources of tectonic stresses. The generalization of the component analysis showed the general properties of the stress and strain state, which is characterized by stretching against the background of prevailing compression. The stress intensity parameter is used to model the interaction features of inhomogeneous profile structures. The degree of plasticity of the geoenvironment is modeled by the deformation intensity parameter.