Stone-cast matrix based on an alloy of basalt and metal oxides. Part I. System basalt–MxOy (M = Sr, Ln)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This work examines stone-cast matrices (SCM) obtained by fusing basalt and Sr, Ln (Ce, Nd, Gd) oxides. It has been established that, as a result of the fusion of basalt with SrO, matrices are obtained containing glass and clinopyroxene as the main phases. Strontium partially replaces calcium in clinopyroxene, but mostly enriches the melt in contact with crystallizing clinopyroxene. When this melt cools, glass is formed containing up to 31 wt% SrO. As a result of the alloying of basalt with oxides of rare earth elements (REE) MxOy: CeO2, Nd2O3, Gd2O3, taken in a mass ratio of 4 : 1 and 2 : 1, SCM are formed, the main permanent phases of which are glass and clinopyroxene. In addition, magnesioferrite can crystallize from a basaltic melt upon cooling, and, depending on the mass ratio of basalt to MxOy, phases of cerianite CeO2 or britholite Ca(Nd,Gd)4(SiO4)3O can crystallize.

Full Text

Restricted Access

About the authors

K. V. Martynov

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: mark0s@mail.ru
Russian Federation, Leninskii pr., 31, kopr. 4, Moscow, 119071

V. V. Kulemin

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: kulyukhin@ipc.rssi.ru
Russian Federation, Leninskii pr., 31, kopr. 4, Moscow, 119071

E. P. Krasavina

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: kulyukhin@ipc.rssi.ru
Russian Federation, Leninskii pr., 31, kopr. 4, Moscow, 119071

I. A. Rumer

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: kulyukhin@ipc.rssi.ru
Russian Federation, Leninskii pr., 31, kopr. 4, Moscow, 119071 

Yu. M. Nevolin

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: kulyukhin@ipc.rssi.ru
Russian Federation, Leninskii pr., 31, kopr. 4, Moscow, 119071

S. A. Kulyukhin

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Author for correspondence.
Email: kulyukhin@ipc.rssi.ru
Russian Federation, Leninskii pr., 31, kopr. 4, Moscow, 119071

References

  1. Данилов С.С. Алюмо-железо-фосфатная стекломатрица для иммобилизации радиоактивных отходов: структура, кристаллизационная, гидролитическая и радиационная устойчивость: Дис. … к. х. н. М.: ГЕОХИ РАН, 2018. 127 с.
  2. Блохин П.А., Дорофеев А.Н., Линге И.И., Меркулов И.А., Сеелев И.Н., Тихомиров Д.В., Уткин С.С., Хаперская А.В. // Радиоактивные отходы. 2019. № 2 (7). С. 49.
  3. Stefanovsky S.V., Stefanovsky O.I., Prusakov I.L., Kadyko M.I., Averin A. A., Nikonov B.S. // J. Non-Cryst. Solids. 2019. Vol. 512. P. 81.
  4. Pyo J.Y., Lee Ch.W., Park H. S., Yang J.H., Um W., Heo J. // J. Nucl. Mater. 2017. Vol. 493. P. 1.
  5. Юдинцев С.В. // Радиохимия. 2021. Т. 63. № 5. С. 403–430. https://doi.org/10.31857/S0033831121050014
  6. Vance E.R. // MRS Bull. 1994. Vol. 19. N 12. P. 28–32. https://doi.org/10.1557/S0883769400048661.
  7. Yang D., Xia Y., Wen J., Liang J., Mu P., Wang Z., Li Y., Wang Y. // J. Alloys Compd. 2017. Vol. 693. P. 565–572. https://doi.org/10.1016/j.jallcom.2016.09.227
  8. Shu X., Fan L., Hou C., Duan T., Wu Y., Chi F., Ma D., Lu X. // Adv. Appl. Ceram. 2017. Vol. 116. P. 272–277. https://doi.org/10.1080/17436753.2017.1295647
  9. Materials for Nuclear Waste Immobilization / Eds M.I. Ojovan, N.C. Hyatt. Basel: MDPI, 2019. 220 p.
  10. Стефановский С.В., Юдинцев С.В. // Успехи химии. 2016. Т. 85. № 9. С. 962.
  11. Yudintsev S., Stefanovsky S., Nikonov B., Stefanovsky O., Nickolskii M., Skvortsov M. // J. Nucl. Mater. 2019. Vol. 517. P. 371.
  12. Zhang Y.X., Liu S.L., OuYang S.L., Zhang X.F., Zhao Z.W., Jia X., Du Y.S., Deng L., Li B.W. // Mater. Chem. Phys. 2020. Vol. 252. Article 123061.https://doi.org/10.1016/j.matchemphys.2020.123061
  13. Крапухин В.Б., Кулемин В.В., Красавина Е.П., Лавриков В.А., Кулюхин С.А., Велешко И.Е., Велешко А.Н. // Экологические системы и приборы. 2014. № 1. С. 4.
  14. Евсеев В.И., Байрон В.Г., Вагин В.В., Крылов В.С. Двухслойные контейнеры для длительного хранения и захоронения радиоактивных отходов // Сайт «Союз литейщиков Санкт-Петербурга». http://souzlit.pro/58.html (дата посещения: 14.11.2023)
  15. Ершов Б.Г., Минаев А.А., Попов И.Б., Юрик Т.К., Кузнецов Д.Г., Иванов В.В., Ровный С.И., Гужавин В.И. // Вопр. радиац. безопасности. 2005. № 1. С. 13.
  16. Matyunin Yu.I., Alexeev O.A., Ananina T.N. // Global 2001 Int. Conf. on Back End of the Fuel Cycle: From Research to Solutions. Paris, 2001. CD-ROM.
  17. Huang X., Shu X., Li L., Chen S., Lu X., Liao B., Xie Y., Chen S., Dong F. // J. Radioanal. Nucl. Chem. 2023. Vol. 332. P. 105–117. https://doi.org/10.1007/s10967-022-08657-8
  18. Lu X., Chen S., Shu X., Hou Ch., Tan H. // Philos. Mag. Lett. 2018. V. 98. N 4. P. 155–160. https://doi.org/10.1080/09500839.2018.1511068
  19. Li L., Shu X., Tang H., Chen S., Huang W., Wei G., Shao D., Xie Y., Lu X. // J. Radioanal. Nucl. Chem. 2021. Vol. 328. P. 795–803. https://doi.org/10.1007/s10967-021-07691-2
  20. Tong Q., Huo J., Zhang X., Cui Z., Zhu Y. // Materials. 2021. Vol. 14. Article 4709. https://doi.org/10.3390/ma14164709
  21. Tong Q., Song Liu S., Huo J., Zhang X., Zhu Y., Zhang A. // J. Non-Cryst. Solids. 2023. Vol. 600. Article 122043. https://doi.org/10.1016/j.jnoncrysol.2022.122043
  22. He Y., Shu X., Li L., Wen M., Wei G., Lu Y., Xie Y., Dong F., Chen Sh., Zhang K., Lu X. // J. Non-Cryst. Solids. 2023. Vol. 600. Article 122039. https://doi.org/10.1016/j.jnoncrysol.2022.122039
  23. Кузнецов Д.Г., Иванов В.В., Попов И.Б., Ершов Б.Г. // Радиохимия. 2009. Т. 51. С. 63–66.
  24. Martynov K.V., Kulemin V.V., Gorbacheva M.P., Kulyukhin S.A. // Ann. Nucl. Energy. 2021. Vol. 163. Article 108555. https://doi.org/10.1016/j.anucene.2021.108555
  25. Kule min V.V., Martynov K.V., Krasavina E. P., Rumer I. A., Kulyukhin S.A. // Radiochemistry. 2022. Vol. 64. N 2. P. 157–162.https://doi.org/10.1134/S1066362222020060

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. SEM image in backscattered electrons of CLM obtained by fusing basalt with SrO in a mass ratio of 2:1 at 1623 K for 5 hours in air. 1 — glass I (enriched with strontium), 2 — glass II, 3 — clinopyroxene.

Download (4MB)
3. Fig. 2. SEM image in backscattered electrons of a sample of a basalt-CeO2 alloy taken in a 4:1 mass ratio (crimson — cerianite, red — magnesioferrite, yellow — glass, green — clinopyroxene, blue — cerium depleted glass).

Download (4MB)
4. Fig. 3. SEM image in backscattered electrons of a sample of a basalt alloy with CeO2 taken in a 2:1 mass ratio (red — glass I, green — glass II, blue — clinopyroxene).

Download (7MB)
5. Fig. 4. SEM image in backscattered electrons of a sample of a basalt alloy with Nd2O3 taken in a 4:1 mass ratio (red is the Nd-containing crystalline phase, yellow is glass I (enriched with neodymium), green is glass II, blue is clinopyroxene).

Download (5MB)
6. Fig. 5. SEM image in backscattered electrons of a sample of a basalt-Nd2O3 alloy taken in a 2:1 mass ratio (red — Ca-Nd britolite, blue — Cr-spinel and magnesioferrite, purple — clinopyroxene and glass).

Download (35KB)
7. Fig. 6. SEM image in backscattered electrons of a sample of a basalt alloy with Gd2O3 taken in a 4:1 mass ratio (raspberry — Gd-containing crystalline phase, yellow-green — glass, blue — Cr-spinel, magnesioferrite, clinopyroxene).

Download (28KB)
8. Fig. 7. SEM image in backscattered electrons of a sample of a basalt alloy with Gd2O3 taken in a 2:1 mass ratio (crimson —Ca-Gd britolite, blue – magnesioferrite, blue — clinopyroxene, purple — glass).

Download (4MB)

Copyright (c) 2024 Russian Academy of Sciences