Stone-cast matrix based on an alloy of basalt and metal oxides. Part I. System basalt–MxOy (M = Sr, Ln)

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

This work examines stone-cast matrices (SCM) obtained by fusing basalt and Sr, Ln (Ce, Nd, Gd) oxides. It has been established that, as a result of the fusion of basalt with SrO, matrices are obtained containing glass and clinopyroxene as the main phases. Strontium partially replaces calcium in clinopyroxene, but mostly enriches the melt in contact with crystallizing clinopyroxene. When this melt cools, glass is formed containing up to 31 wt% SrO. As a result of the alloying of basalt with oxides of rare earth elements (REE) MxOy: CeO2, Nd2O3, Gd2O3, taken in a mass ratio of 4 : 1 and 2 : 1, SCM are formed, the main permanent phases of which are glass and clinopyroxene. In addition, magnesioferrite can crystallize from a basaltic melt upon cooling, and, depending on the mass ratio of basalt to MxOy, phases of cerianite CeO2 or britholite Ca(Nd,Gd)4(SiO4)3O can crystallize.

Негізгі сөздер

Толық мәтін

Рұқсат жабық

Авторлар туралы

K. Martynov

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: mark0s@mail.ru
Ресей, Leninskii pr., 31, kopr. 4, Moscow, 119071

V. Kulemin

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: kulyukhin@ipc.rssi.ru
Ресей, Leninskii pr., 31, kopr. 4, Moscow, 119071

E. Krasavina

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: kulyukhin@ipc.rssi.ru
Ресей, Leninskii pr., 31, kopr. 4, Moscow, 119071

I. Rumer

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: kulyukhin@ipc.rssi.ru
Ресей, Leninskii pr., 31, kopr. 4, Moscow, 119071 

Yu. Nevolin

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: kulyukhin@ipc.rssi.ru
Ресей, Leninskii pr., 31, kopr. 4, Moscow, 119071

S. Kulyukhin

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: kulyukhin@ipc.rssi.ru
Ресей, Leninskii pr., 31, kopr. 4, Moscow, 119071

Әдебиет тізімі

  1. Данилов С.С. Алюмо-железо-фосфатная стекломатрица для иммобилизации радиоактивных отходов: структура, кристаллизационная, гидролитическая и радиационная устойчивость: Дис. … к. х. н. М.: ГЕОХИ РАН, 2018. 127 с.
  2. Блохин П.А., Дорофеев А.Н., Линге И.И., Меркулов И.А., Сеелев И.Н., Тихомиров Д.В., Уткин С.С., Хаперская А.В. // Радиоактивные отходы. 2019. № 2 (7). С. 49.
  3. Stefanovsky S.V., Stefanovsky O.I., Prusakov I.L., Kadyko M.I., Averin A. A., Nikonov B.S. // J. Non-Cryst. Solids. 2019. Vol. 512. P. 81.
  4. Pyo J.Y., Lee Ch.W., Park H. S., Yang J.H., Um W., Heo J. // J. Nucl. Mater. 2017. Vol. 493. P. 1.
  5. Юдинцев С.В. // Радиохимия. 2021. Т. 63. № 5. С. 403–430. https://doi.org/10.31857/S0033831121050014
  6. Vance E.R. // MRS Bull. 1994. Vol. 19. N 12. P. 28–32. https://doi.org/10.1557/S0883769400048661.
  7. Yang D., Xia Y., Wen J., Liang J., Mu P., Wang Z., Li Y., Wang Y. // J. Alloys Compd. 2017. Vol. 693. P. 565–572. https://doi.org/10.1016/j.jallcom.2016.09.227
  8. Shu X., Fan L., Hou C., Duan T., Wu Y., Chi F., Ma D., Lu X. // Adv. Appl. Ceram. 2017. Vol. 116. P. 272–277. https://doi.org/10.1080/17436753.2017.1295647
  9. Materials for Nuclear Waste Immobilization / Eds M.I. Ojovan, N.C. Hyatt. Basel: MDPI, 2019. 220 p.
  10. Стефановский С.В., Юдинцев С.В. // Успехи химии. 2016. Т. 85. № 9. С. 962.
  11. Yudintsev S., Stefanovsky S., Nikonov B., Stefanovsky O., Nickolskii M., Skvortsov M. // J. Nucl. Mater. 2019. Vol. 517. P. 371.
  12. Zhang Y.X., Liu S.L., OuYang S.L., Zhang X.F., Zhao Z.W., Jia X., Du Y.S., Deng L., Li B.W. // Mater. Chem. Phys. 2020. Vol. 252. Article 123061.https://doi.org/10.1016/j.matchemphys.2020.123061
  13. Крапухин В.Б., Кулемин В.В., Красавина Е.П., Лавриков В.А., Кулюхин С.А., Велешко И.Е., Велешко А.Н. // Экологические системы и приборы. 2014. № 1. С. 4.
  14. Евсеев В.И., Байрон В.Г., Вагин В.В., Крылов В.С. Двухслойные контейнеры для длительного хранения и захоронения радиоактивных отходов // Сайт «Союз литейщиков Санкт-Петербурга». http://souzlit.pro/58.html (дата посещения: 14.11.2023)
  15. Ершов Б.Г., Минаев А.А., Попов И.Б., Юрик Т.К., Кузнецов Д.Г., Иванов В.В., Ровный С.И., Гужавин В.И. // Вопр. радиац. безопасности. 2005. № 1. С. 13.
  16. Matyunin Yu.I., Alexeev O.A., Ananina T.N. // Global 2001 Int. Conf. on Back End of the Fuel Cycle: From Research to Solutions. Paris, 2001. CD-ROM.
  17. Huang X., Shu X., Li L., Chen S., Lu X., Liao B., Xie Y., Chen S., Dong F. // J. Radioanal. Nucl. Chem. 2023. Vol. 332. P. 105–117. https://doi.org/10.1007/s10967-022-08657-8
  18. Lu X., Chen S., Shu X., Hou Ch., Tan H. // Philos. Mag. Lett. 2018. V. 98. N 4. P. 155–160. https://doi.org/10.1080/09500839.2018.1511068
  19. Li L., Shu X., Tang H., Chen S., Huang W., Wei G., Shao D., Xie Y., Lu X. // J. Radioanal. Nucl. Chem. 2021. Vol. 328. P. 795–803. https://doi.org/10.1007/s10967-021-07691-2
  20. Tong Q., Huo J., Zhang X., Cui Z., Zhu Y. // Materials. 2021. Vol. 14. Article 4709. https://doi.org/10.3390/ma14164709
  21. Tong Q., Song Liu S., Huo J., Zhang X., Zhu Y., Zhang A. // J. Non-Cryst. Solids. 2023. Vol. 600. Article 122043. https://doi.org/10.1016/j.jnoncrysol.2022.122043
  22. He Y., Shu X., Li L., Wen M., Wei G., Lu Y., Xie Y., Dong F., Chen Sh., Zhang K., Lu X. // J. Non-Cryst. Solids. 2023. Vol. 600. Article 122039. https://doi.org/10.1016/j.jnoncrysol.2022.122039
  23. Кузнецов Д.Г., Иванов В.В., Попов И.Б., Ершов Б.Г. // Радиохимия. 2009. Т. 51. С. 63–66.
  24. Martynov K.V., Kulemin V.V., Gorbacheva M.P., Kulyukhin S.A. // Ann. Nucl. Energy. 2021. Vol. 163. Article 108555. https://doi.org/10.1016/j.anucene.2021.108555
  25. Kule min V.V., Martynov K.V., Krasavina E. P., Rumer I. A., Kulyukhin S.A. // Radiochemistry. 2022. Vol. 64. N 2. P. 157–162.https://doi.org/10.1134/S1066362222020060

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. SEM image in backscattered electrons of CLM obtained by fusing basalt with SrO in a mass ratio of 2:1 at 1623 K for 5 hours in air. 1 — glass I (enriched with strontium), 2 — glass II, 3 — clinopyroxene.

Жүктеу (4MB)
3. Fig. 2. SEM image in backscattered electrons of a sample of a basalt-CeO2 alloy taken in a 4:1 mass ratio (crimson — cerianite, red — magnesioferrite, yellow — glass, green — clinopyroxene, blue — cerium depleted glass).

Жүктеу (4MB)
4. Fig. 3. SEM image in backscattered electrons of a sample of a basalt alloy with CeO2 taken in a 2:1 mass ratio (red — glass I, green — glass II, blue — clinopyroxene).

Жүктеу (7MB)
5. Fig. 4. SEM image in backscattered electrons of a sample of a basalt alloy with Nd2O3 taken in a 4:1 mass ratio (red is the Nd-containing crystalline phase, yellow is glass I (enriched with neodymium), green is glass II, blue is clinopyroxene).

Жүктеу (5MB)
6. Fig. 5. SEM image in backscattered electrons of a sample of a basalt-Nd2O3 alloy taken in a 2:1 mass ratio (red — Ca-Nd britolite, blue — Cr-spinel and magnesioferrite, purple — clinopyroxene and glass).

Жүктеу (35KB)
7. Fig. 6. SEM image in backscattered electrons of a sample of a basalt alloy with Gd2O3 taken in a 4:1 mass ratio (raspberry — Gd-containing crystalline phase, yellow-green — glass, blue — Cr-spinel, magnesioferrite, clinopyroxene).

Жүктеу (28KB)
8. Fig. 7. SEM image in backscattered electrons of a sample of a basalt alloy with Gd2O3 taken in a 2:1 mass ratio (crimson —Ca-Gd britolite, blue – magnesioferrite, blue — clinopyroxene, purple — glass).

Жүктеу (4MB)

© Russian Academy of Sciences, 2024