Influence of conditions for the formation of hafnium oxide films on the structural and electrical properties of heterostructures.

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Hafnium oxide (HfO_2) films were synthesized onto silicon substrates by magnetron sputtering under various technological conditions. Research results presented structural composition of HfO2 films and electrical properties of heterostructures metal-insulator-semiconductor (Ni–HfO_2–Si) based on them.

About the authors

M. S. Afanas'ev

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Fryazino Branch

Email: gvc@ms.ire.rssi.ru
Fryazino, Moscow oblast, 141190 Russia

D. A. Belorusov

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Fryazino Branch

Email: gvc@ms.ire.rssi.ru
Fryazino, Moscow oblast, 141190 Russia

D. A. Kiselyov

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Fryazino Branch

Email: gvc@ms.ire.rssi.ru
Fryazino, Moscow oblast, 141190 Russia

V. A. Luzanov

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Fryazino Branch

Email: gvc@ms.ire.rssi.ru
Fryazino, Moscow oblast, 141190 Russia

G. V. Chucheva

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Fryazino Branch

Author for correspondence.
Email: gvc@ms.ire.rssi.ru
Fryazino, Moscow oblast, 141190 Russia

References

  1. Wang Y., Chen W.-J., Wang B., Zheng Yu. // Materials. 2014. V. 7. P. 6377. https://doi.org/10.3390/ma7096377
  2. Khosla R., Sharma S.K. // ACS Appl. Electronic Mater. 2021. V. 3. № 7. P. 2862. https://doi.org/10.1021/acsaelm.0c00851
  3. Chou Ch.-P., Lin Y.-X., Huang Y.-K. et al. // ACS Appl. Mater. & Interfaces. 2020. V. 12. № 1. P. 1014. https://doi.org/10.1021/acsami.9b16231
  4. Воротилов К.А., Мухортов В.М., Сигов А.С. Интегрированные сегнетоэлектрические устройства. М.: Энергоатомиздат, 2011.
  5. Yuan G., Wang Ch., Tang W. et al. // Acta Physica Sinica. 2023. Article ASAP. https://doi.org/10.7498/aps.72.20222221
  6. Setter N., Damjanovic D., Eng L. et al. // J. Appl. Phys. 2006. V. 100. P. 051606. https://doi.org/10.1063/1.2336999
  7. Scott J.F. // Science. 2007. V. 315. № 5814. P. 954. https://doi.org/10.1126/science.1129564
  8. Ihlefeld J.F., Jaszewski S.T., Fields S.S. // Appl. Phys. Lett. 2022. V. 121. № 24. P. 240502. https://doi.org/10.1063/5.0129546
  9. Fujimoto K., Sato Y., Fuchikami Y. et al. // J. Amer. Ceramic Soc. 2022. V. 105. № 4. P. 2823. https://doi.org/10.1111/jace.18242
  10. Hsain H.A., Lee Y., Materano M. et al. // J. Vacuum Science & Technol. A. 2022. V. 40. № 1. P. 010803. https://doi.org/10.1116/6.0001317
  11. Chouprik A., Negrov D., Tsymbal E.Y., Zenkevich A. // Nanoscale. 2021. V. 13. № 27. P. 11635. https://doi.org/10.1039/D1NR01260F
  12. Lee D.H., Lee Y., Yang K. et al. // Appl. Phys. Rev. 2021. V. 8. № 2. P. 021312. https://doi.org/10.1063/5.0047977
  13. Nukala P., Ahmadi M., Wei Y. et al. // Science. 2021. V. 372. № 6542. P. 630. https://doi.org/10.1126/science.abf3789
  14. Jiang P., Luo Q., Xu X. et al. // Advanced Electronic Mater. 2021. V. 7. № 1. P. 2000728. https://doi.org/10.1002/aelm.202000728
  15. Aldrigo M., Dragoman M., Iordanescu S. et al. // Nanomaterials. 2020. V. 10. № 10. P. 2057. https://doi.org/10.3390/nano10102057
  16. Lomenzo P.D., Jachalke S., Stoecker H. et al. // Nano Energy. 2020. V. 74. P. 104733. https://doi.org/10.1016/j.nanoen.2020.104733
  17. Quan Zh., Wang M., Zhang X. et al. // AIP Advances. 2020. V. 10. № 8. P. 085024. https://doi.org/10.1063/5.0013511
  18. Zhang Y., Yang Q., Tao L. et al. // Phys. Rev. Appl. 2020. V. 14. № 1. P. 014068. https://doi.org/10.1103/PhysRevApplied.14.014068
  19. Schenk T., Pešić M., Slesazeck S. et al. // Reports on Progress in Physics. 2020. V. 83. № 8. P. 086501. https://doi.org/10.1088/1361-6633/ab8f86
  20. Locatelli N., Diez L.H., Mikolajick T. Memristive Devices for Brain-Inspired Computing. Cambridge: Woodhead Publ., 2020. P. 97. https://doi.org/10.1016/B978-0-08-102782-0.00004-6
  21. Черникова А.Г., Красников Г.Я., Горнев Е.С. и др. // Наноиндустрия. 2018. № 8. С. 281. https://doi.org/10.22184/1993-8578.2018.82.281
  22. Gannepalli A., Yablon D.G., Tsou A.H., Proksch R. // Nanotechnology. 2013. V. 24. P. 159501. https://doi.org/10.1088/0957-4484/24/15/159501
  23. Bian J., Xue P., Zhu R. et al. // Appl. Mater. Today. 2020. V. 21. P. 100789. https://doi.org/10.1016/j.apmt.2020.100789
  24. Гольдман Е.И., Ждан А.Г., Чучева Г.В. // ПТЭ. 1997. № 6. С. 110.
  25. Афанасьев М.С., Киселев Д.А., Левашов С.А. и др. // ФТТ. 2019. Т. 61. № 10. С. 1948.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (139KB)
3.

Download (1MB)
4.

Download (321KB)
5.

Download (141KB)
6.

Download (155KB)
7.

Download (88KB)
8.

Download (64KB)

Copyright (c) 2023 М.С. Афанасьев, Д.А. Белорусов, Д.А. Киселев, В.А. Лузанов, Г.В. Чучева