The proposed mechanism of glow of mesosphere clouds
- Authors: Bordonskiy G.S.1, Gurulev A.A.1, Orlov A.O.1, Kazantsev V.A.1
-
Affiliations:
- Institute of Natural Resources, Ecology and Cryology of the Siberian Branch of the RAS
- Issue: Vol 69, No 4 (2024)
- Pages: 307-315
- Section: ЭЛЕКТРОДИНАМИКА И РАСПРОСТРАНЕНИЕ РАДИОВОЛН
- URL: https://rjonco.com/0033-8494/article/view/650684
- DOI: https://doi.org/10.31857/S0033849424040013
- EDN: https://elibrary.ru/JSHGWK
- ID: 650684
Cite item
Abstract
The question of the physical mechanism of electromagnetic radiation scattering by mesospheric (noctilucent) clouds is considered. A hypothesis has been expressed about the special electromagnetic characteristics of nanometer-sized ice particles that make up mesospheric clouds. Particle ice consists of a recently discovered crystalline modification of water — ice 0, formed by the condensation of vapor on dust particles at temperatures of –140…–23°C. Ice 0 is a ferroelectric, and upon contact with a dielectric, a layer with high electrical conductivity is formed. Due to plasmon resonance in nanosized layers, strong scattering of electromagnetic radiation occurs over a wide frequency range. This mechanism causes the glow of noctilucent clouds when illuminated by the radiation of the Sun.
About the authors
G. S. Bordonskiy
Institute of Natural Resources, Ecology and Cryology of the Siberian Branch of the RAS
Author for correspondence.
Email: lgc255@mail.ru
Russian Federation, Chita, 672002
A. A. Gurulev
Institute of Natural Resources, Ecology and Cryology of the Siberian Branch of the RAS
Email: lgc255@mail.ru
Russian Federation, Chita, 672002
A. O. Orlov
Institute of Natural Resources, Ecology and Cryology of the Siberian Branch of the RAS
Email: lgc255@mail.ru
Russian Federation, Chita, 672002
V. A. Kazantsev
Institute of Natural Resources, Ecology and Cryology of the Siberian Branch of the RAS
Email: lgc255@mail.ru
Russian Federation, Chita, 672002
References
- Russell J. // Global Change and the Solar-Terrestrial Environment. 12–17 Jun. 2010, Aspen. Р. 1. https://www.agci.org/wp-content/uploads/imported-files/2022/07/10S1_0616_JRussell.pdf
- Romejko V.A., Dalin P.A., Pertsev N.N. // J. Geophys. Res. Atmos. 2003. V. 108. № D8. P. 8443. https://doi.org/10.1029/2002JD002364
- Dalin P., Pertsev N., Perminov V. et al. // Ann. Geophys. 2020. V. 38. № 1. P. 61. https://doi.org/10.5194/angeo-38-61-2020
- Бронштэн В.А., Гришин Н.И. Серебристые облака. М.: Наука, 1970.
- Thomas G.E. // Adv. Space Res. 2003. V. 32. № 9. P. 1737. https://doi.org/10.1016/S0273-1177(03)90470-4
- DeLand M.T., Shettle E.P., Thomas G.E., Olivero J.J. // J. Atmos. Sol.-Terr. Phys. 2006. V. 68. № 1. P. 9. https://doi.org/10.1016/j.jastp.2005.08.003
- Ролдугин В.К., Черняков С.М., Ролдугин А.В., Оглоблина О.Ф. // Геомагнетизм и аэрономия. 2018. Т. 58. № 3. С. 343. https://doi.org/10.7868/S0016794018030045
- Rapp M., Lübken F.J. // J. Geophys. Res. Atmos. 2009. V. 114. № D11. P. D11204. https://doi.org/10.1029/2008JD011323
- Murray B.J., Plane J.M.C. // Phys. Chem. Chem. Phys. 2005. V. 7. № 23. P. 3970. https://doi.org/10.1039/B508846A
- Thomas G.E., Olivero J.J., Jensen E.J. et al. // Nature. 1989. V. 338. № 6215. P. 490. https://doi.org/10.1038/338490a0
- von Savigny C., Sinnhuber M., Bovensmann H. et al. // Geophys. Res. Lett. 2007. V. 34. № 2. P. L02805. https://doi.org/10.1029/2006GL028106
- Бордонский Г.С., Гурулев А.А. // Письма в ЖТФ. 2017. Т. 43. № 8. С. 34. https://doi.org/10.21883/PJTF.2017.08.44532.16338
- Tromp T.K., Shia R.L., Allen M. et al. // Sci. 2003. V. 300. № 5626. P. 1740. https://doi.org/10.1126/science.1085169
- Сывороткин В.Л. Экологические аспекты дегазации Земли. М.: Геоинформмарк, 1998.
- Bordonskiy G.S., Gurulev A.A., Orlov A.O. // Proc. SPIE. 25th Intern. Symp. on Atmospheric and Ocean Optics: Atmospheric Physics. 01–05 July 2019, Novosibirsk, Russia. Washington: SPIE, 2019. V. 11208. P. 1120818. https://doi.org/10.1117/12.2539769
- Russo J., Romano F., Tanaka H. // Nature Mater. 2014. V. 13. № 7. P. 733. https://doi.org/10.1038/NMAT3977
- Quigley D., Alfè D., Slater B. // J. Chem. Phys. 2014. V. 141. № 16. P. 161102. https://doi.org/10.1063/1.4900772
- Бордонский Г.С., Орлов А.О. // Письма в ЖЭТФ. 2017. Т. 105. № 7–8. С. 483. https://doi.org/10.7868/S0370274X17080045
- Борен К., Хафмен Д. Поглощение и рассеяние света малыми частицами. М.: Мир, 1986.
- Korobeynikov S.M., Drozhzhin A.P., Furin V.P. et al. // Proc. of 2002 IEEE14th ICDL. 12 July 2002, Graz, Austria. N.Y.: IEEE, 2002. P. 270. https://doi.org/10.1109/ICDL.2002.1022681
- Korobeynikov S.M., Melekhov A.V., Soloveitchik Yu.G. et al. // J. Phys. D: Appl. Phys. 2005. V. 38. № 6. P. 915. https://doi.org/10.1088/0022-3727/38/6/021
- Бордонский Г.С., Гурулев А.А., Орлов А.О. // Письма в ЖЭТФ. 2020. Т. 111. № 5. С. 311. https://doi.org/10.31857/S0370274X20050070
- Leoni F., Russo J. // Phys. Rev. X. 2021. V. 11. № 3. P. 031006. https://doi.org/10.1103/PhysRevX.11.031006
- Solveyra E.G., Llave E., Scherlis D.A., Molinero V. // J. Phys. Chem. B. 2011. V. 115. Iss. 48. P. 14196. https://doi.org/10.1021/jp205008w
- Климов В. В. Наноплазмоника. М.: Физматлит, 2009.
- Болтаев А.П., Пенин Н.А., Погосов А.О., Пудонин Ф.А. // ЖЭТФ. 2003. Т. 123. № 5. С. 1067.
- Болтаев А.П., Пудонин Ф.А. // Краткие сообщ. по физике ФИАН. 2011. № 7. С. 3.
- Муравьев В.М., Кукушкин И.В. // Успехи физ. наук. 2020. Т. 190. № 10. С. 1041. https://doi.org/10.3367/UFNr.2019.07.038637
- Альшиц В.И., Любимов В.Н. // Письма в ЖЭТФ. 2020. Т. 112. № 2. С. 127. https://doi.org/10.31857/S1234567820140128
- Невзоров А.Н. // Изв. РАН. Физика атмосферы и океана. 2006. Т. 42. № 6. С. 830.
- Кутуза Б.Г., Данилычев М.В., Яковлев О.И. Спутниковый мониторинг Земли: Микроволновая радиометрия атмосферы и поверхности. М.: Ленадд, 2016.
- Томилина О.А., Бержанский В.Н., Томилин С.В. // ФТТ. 2020. Т. 62. № 4. С. 614. https://doi.org/10.21883/FTT.2020.04.49129.610
Supplementary files
