Synthesis of a four-point model of an airplane
- Authors: Stepanov M.A.1, Kiselev A.V.1, Artyushenko V.V.1
-
Affiliations:
- Novosibirsk State Technical University
- Issue: Vol 69, No 3 (2024)
- Pages: 233-242
- Section: СТАТИСТИЧЕСКАЯ РАДИОФИЗИКА
- URL: https://rjonco.com/0033-8494/article/view/650699
- DOI: https://doi.org/10.31857/S0033849424030045
- EDN: https://elibrary.ru/JVHGFX
- ID: 650699
Cite item
Abstract
The modeling of echo signals from distributed radar objects taking into account the noise of their angular coordinates is considered. Relationships are presented that allow the transition from a multipoint model of an arbitrary object containing tens, hundreds and even thousands of emitting points to a model composed of four emitting points located at the vertices of a square. As an example, we synthesized an airplane model containing only four points. It is obtained on the basis of a multipoint model composed of 56 points. Using numerical modeling methods, it has been shown that angular noise generated by multi-point and four-point aircraft models have identical correlation functions and similar parameters of the probability density distribution of angular coordinate noise. The obtained result is also confirmed by semi-natural modeling methods using a matrix simulator.
Full Text

About the authors
M. A. Stepanov
Novosibirsk State Technical University
Author for correspondence.
Email: m.stepanov@corp.nstu.ru
Russian Federation, prosp. K. Marksa, 20, Novosibirsk, 630073
A. V. Kiselev
Novosibirsk State Technical University
Email: m.stepanov@corp.nstu.ru
Russian Federation, prosp. K. Marksa, 20, Novosibirsk, 630073
V. V. Artyushenko
Novosibirsk State Technical University
Email: m.stepanov@corp.nstu.ru
Russian Federation, prosp. K. Marksa, 20, Novosibirsk, 630073
References
- Melvin W.L., Scheer J.A. Principles of Modern Radar: Radar Applications. Edison: Scitech Publ., 2014.
- Johnston S.L. // IEEE Trans. 1997. V. AES-33. № 2. Pt.2. P. 696.
- Stepanov M.A., Kiselev A.V. // J. Computer Systems Sci. Int. 2019. V. 58. № 4. P. 595.
- Zhou Jianxiong, Shi Zhiguang, Cheng Xiao, Fu Qiang // IEEE Trans. 2011. V. GRS-49. № 10. P. 3713.
- Островитянов Р.В., Басалов Ф.А. Статистическая теория радиолокации протяженных целей. М.: Радио и связь, 1982.
- Yu Yiwei, Song Jie, Xiong Wei // 2nd IEEE Intern. Conf. Inform. Communication and Signal Processing. 2019. P. 161.
- Podkopaev A.O., Stepanov M.A., Kiselev A.V. // Radio Sci. V. 56. № 12. P. 6.
- Бердышев В.П., Миронов А.М., Помазуев О.Н. и др. // Журн. Сибирского федерального университета. Сер. Техника и технологии. 2018. Т. 11. № 7. С. 764.
- Панов Д.В., Юдин В.А., Караваев С.А. // Математическая морфология. Электронный математ. и медико-биол. журн. 2009. V. 8. № 3. С. 1–7.
- Wang C.-Q, Wang X.-M., Shi X.-L. // Binggong Xuebao/Acta Armamentarii. 2008. V. 29(12). P. 1479.
- Тырыкин С.В., Киселев А.В. // Изв. вузов. Радиоэлектроника. 2003. V. 4. P. 76.
- Hseuh-Jyh Li, Nabil H. Farhat, Yuhsyen Shen // IEEE Trans. 1989. V. GRS-27. № 1. P. 98.
- Борзов А.Б., Быстров Р.П., Соколов А.В. // Журн. радиоэлектроники. 1998. № 1. С. 1.http://jre.cplire.ru/jre/dec98/4/text.html
- Корн Г., Корн Т. Справочник по математике. 4-е изд. М.: Наука, 1978.
Supplementary files
