Comparative analysis of magnetic and electronic properties of 2d phases of chromium tellurides

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The first-principle modeling of two different quasi-two-dimensional phases based on the volume phases Cr2Te3 and CrTe3 is carried out. Structural relaxation of the obtained 2D compounds and their volumetric prototypes was performed within the framework of the density functional method and the projection plane wave method. Magnetic anisotropy in various crystallographic planes of quasi-two-dimensional structures and corresponding bulk materials has been studied. An increase in magnetic anisotropy was found during the transition from bulk phases to quasi-two-dimensional phases of Cr2Te3/CrTe3. A charge density map is constructed and the density of electronic states is found for 2D Cr2Te3 and CrTe3 materials.

Full Text

Restricted Access

About the authors

A. I. Kartsev

Computing Center of Far Eastern Branch of RAS; Bauman Moscow State Technical University

Author for correspondence.
Email: karec1@gmail.com
Russian Federation, Kim You Chen Str., 65, Khabarovsk, 680000; 2-nd Baumanskaya Str., 5, build.1, Moscow, 105005

A. A. Safronov

MIREA – Russian Technological University

Email: karec1@gmail.com
Russian Federation, prosp. Vernadskogo, 78, Moscow, 119454

References

  1. Zhang P., Xue S., Wang J. // Materials & Design. 2020. V. 192. P. 108726. https://doi.org/10.1016/j.matdes.2020.108726
  2. Zhang Z., Wang Z., Shi T. et al. // InfoMat. 2020. V. 2. №. 2. P. 261. https://doi.org/10.1002/inf2.12077
  3. Frazier A.B., Warrington R.O., Friedrich C. et al. // IEEE Trans. 1995. V. ID-42. № 5. P. 423. https://doi.org/10.1109/41.464603
  4. Charles Jr H. K. // Johns Hopkins APL Technical Digest. 2005. V. 26. №. 4. P. 402.
  5. Rohrer H.R. // Jap. J. Appl. Phys. 1993. V. 32. № 3. P. 1335.
  6. Keyes R.W. // IBM J. Research and Development. 1988. V. 32. № 1. P. 84.
  7. Гуляев Ю.В., Сандомирский В.Б., Суханов А.А., Ткач Ю.Я. // Успехи физ. наук. 1984. Т. 144. № 3. С. 475.
  8. Gong C., Zhang X. // Science. 2019. V. 363. № 6428. P. 4450. https://www.science.org/doi/10.1126/science.aav4450
  9. Kartsev A., Malkovsky S., Chibisov A. // Nanomaterials. 2021. V. 11. № 11. P. 2967. https://doi.org/10.3390/nano11112967Б
  10. Билык В.Р., Брехов К.А., Агранат М.Б., Мишина Е.Д. // Russ. Technol. J. 2023. Т. 11. № 3. С. 38. https://doi.org/10.32362/2500-316X-2023-11-3-38-4
  11. Negedu S. D., Kartsev A.I., Palit M. et al. // J. Phys. Chem. C. 2022. V. 126. № 30. P. 12545. https://doi.org/10.1021/acs.jpcc.2c02102
  12. Xiong Z., Hu C., Luo X. // Nano Lett. 2021. V. 21. № 24. P. 10486.
  13. Li R., Nie J.-H., Xianet J.-J. et al. // ACS Nano. 2022. V. 16. № 3. P. 4348.
  14. Yao J., Wang H., Yuan B. et al. // Adv. Mater. 2022. V. 34. № 23. P. 2200236.
  15. Medvedev M.G., Bushmarinov I.S., Sun J. et al. // Science. 2017. V. 355. № 6320. P. 49. https://www.science.org/doi/10.1126/science.aah5975
  16. Hafner J. // J. Computational Chem. 2008. V. 29. № 13. P. 2044. https://doi.org/10.1002/jcc.21057
  17. Perdew J.P., Ernzerhof M., Burke K. // J. Chem. Phys. 1996. V. 105. № 22. P. 9982.
  18. Kartsev A. A., Augustin M., Evans R.F.L. et al. // npj Computational Mater. 2020. V. 6. № 1. P. 150. https://www.nature.com/articles/s41524-020-00416-1
  19. Momma K, Izumi F. // J. Appl. Crystallography. 2008. V. 41. № 3. P. 653. https://doi.org/10.1107/S0021889808012016
  20. Synnatschke K., Badlyan N., Wrzesińska A. et al. // Ultrasonics Sonochemistry. 2023. V. 98. P. 106528.
  21. Pramanik T., Anupam R., Rik D. et al. // J. Magn. Magn. Mater. 2017. V. 437. P. 72.
  22. Bian M., Kamenskii N., Han M. et al. // Mater. Research Lett. 2021. V. 9. № 5. P. 205.
  23. Debbichi M., Debbichi L., Lebègue S. // Phys. Lett. A. 2020. V. 384. № 27. P. 126684.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Equilibrium structures: bulk Cr2Te3 (a) and CrTe3 (c) and in the Cr-centred polyhedron model - Cr2Te3 (b), CrTe3 (d). Cr atoms are indicated in blue and Te atoms in gold.

Download (636KB)
3. Fig. 2. Plane 110 in the bulk structure of Cr2Te3 (a); relaxed 2D structure of Cr2Te3 (b); two-dimensional layers of bulk chromium telluride in crystallographic planes (100) (b); isolated and relaxed unit cell of two-dimensional CrTe3 (d).

Download (459KB)
4. Fig. 3. Three-dimensional isosurface 0.03 e/Å3 (e – elementary charge) of charge density distribution for quasi-two-dimensional structures Cr2Te3 (a) and CrTe3 (b).

Download (491KB)
5. Fig. 4. Density of electronic states for Cr2Te3 (a) and CrTe3 (b) per formula unit: 1 – total density of electronic states, 2 and 3 – contribution of d/p electrons of Cr and Te, respectively; EF – Fermi energy. The upper half-plane of the PES (positive values) corresponds to spin-up states, the lower half-plane (negative values) – to spin-down states.

Download (234KB)
6. Fig. 5. Magnetic anisotropy of: bulk (1) and quasi-dimensional (2) Cr2Te3 samples in the (110) (a) and (110) (b) planes, bulk (1) and two-dimensional (2) CrTe3 samples in the (100) (c) and (1,0,3) (d) planes. The minimum energy of the system at 1 f.u. The angle θ for Cr2Te3 was postponed from vector c, for Cr2Te3 - from vector b; cos(θ) was varied in steps of 0.04.

Download (297KB)

Copyright (c) 2024 Russian Academy of Sciences