Printed antennas with difference radiation pattern on a base of the center-end-fed dipole-like radiators

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

New layout schemes and topologies of the printed antennas with difference radiation patterns on a base of the center-end-fed dipole-like radiators are considered. They are formed using a systems-technical approach together with an induced electromotive force method. Due to the asymmetrical structure of the radiator, it is possible to realize the two forms of the difference radiation patterns: “slice-shaped” (similar to orange slices) and “funnel-shaped”. A mechanism of the antenna radiation with “slice-shaped” radiation pattern is justified and the validity results are presented. A feature of the “funnel-shaped” radiation pattern is noted. Considerations for understanding this radiation mechanism are given, and the validity experimental results are presented. The proposed antennas can serve as an element base through a creation of the printed radiating systems of various kinds.

Full Text

Restricted Access

About the authors

S. A. Alekseytsev

Novosibirsk State Technical University

Email: kolesiniandre@icloud.com
Russian Federation, K. Marx Avenue, 20, Novosibirsk, 630073

A. P. Gorbachev

Novosibirsk State Technical University

Email: kolesiniandre@icloud.com
Russian Federation, K. Marx Avenue, 20, Novosibirsk, 630073

A. A. Kolesnikov

Novosibirsk State Technical University

Author for correspondence.
Email: kolesiniandre@icloud.com
Russian Federation, K. Marx Avenue, 20, Novosibirsk, 630073

References

  1. Комплексы с беспилотными летательными аппаратами. В 2-х кн.: Кн. 1. Принципы построения и особенности применения комплексов с БЛА / Под ред. В. С. Вербы, Б. Г. Татарского. М.: Радиотехника. 2016.
  2. Устройства СВЧ и антенны. Проектирование фазированных антенных решеток / Под ред. Д. И. Воскресенского. М.: Радиотехника. 2012.
  3. Handbook of Antenna Technologies / Ed by Z. N. Chen. Singapore: Springer, 2016.
  4. Борейчук А.И., Горбачев А.П., Кириллова Н.А., Шведова А.В. Вибраторная антенна. Патент РФ № 2571156. Опубл. офиц. бюл. “Изобретения. Полезные модели” № 35 от 20. 12. 2015.
  5. Бухтияров Д.А., Вильмицкий Д.С., Горбачев А.П. и др. Волноводно-дипольная антенна. Патент РФ № 2676207. Опубл. офиц. бюл. “Изобретения. Полезные модели” № 36 от 26. 12. 2018.
  6. Бухтияров Д.А., Горбачев А.П. // Вопросы радиоэлектрон. 2018. № 4. С. 19. http: doi.org/ 10.21778/2218-5453-2018-4-19-23
  7. Alekseytsev S.A., Atuchin V.V., Gorbachev A.P., Parshin Y.N. // J. Electromagnetic Waves and Applications. 2022. V. 36. № 15. P. 2115. http: doi.org/ 10.1080/09205071.2022.2065938
  8. Jenn D.C., Chua E.-H. // Electron. Lett. 2003. V. 39. № 12. P. 892. http: doi.org/10.1049/el:20030584
  9. Alekseitsev S.A., Bukhtiyarov D.A., Gorbachev A.P., Vilmitsky D.S. // Electromagnetics. 2020. V. 40. № 8. P. 554. http: doi.org/10.1080/02726343.2020.1838046
  10. Sherman S.M., Barton D.K. Monopulse Principles and Techniques. Norwood: Artech House, 2011.
  11. Bailey A.D., Jordan E.C., Webb H.D. A Сomparison of Radio Direction Finding Systems. Urbana: Univ. of Illinois, 1949.
  12. Jenkins H.H. Small-aperture Radio Direction-Finding. Norwood: Artech House, 1991.
  13. Wang H., Fang D.-G., Chen X.G. // IEEE Trans. 2006. V. AP-54. № 2. P. 503. http: doi.org/10.1109/TAP.2005.863103
  14. Yu F., Xie Y., Zhang L. // IEEE Microwave and Wireless Components Lett. 2016. V. 26. № 10. P. 762. http: doi.org/10.1109/LMWC.2016.2604866
  15. Sun H., Ge X., He W., Zhao L. // IEEE Antennas and Wireless Propagation Lett. 2020. V. 19. P. 1073. http: doi.org/10.1109/LAWP.2020.2988690
  16. Deng Z., Zhang F., Liang M. et al. // Progress in Electromagnetics Research C. 2017. V. 74. P. 41.
  17. Марков Г.Т., Сазонов Д.М. Антенны. М.: Энергия, 1975.
  18. Колесников А.А. Волноводно-дипольная антенна для систем радио-мониторинга. Магистерская дисс. Новосибирск: Гос. тех. унив, 2023. 101 с.
  19. Kolesnikov A.A., Alekseytsev S.A., Gorbachev A.P. // 2023 IEEE XVI Int. Scientific and Technical Conf. “Actual Problems of Electronic Instrument Engineering (APEIE)” Novosibirsk. 10–12 Nov. N.Y.: IEEE, 2023. P. 730. http: doi.org/10.1109/APEIE59731.2023.10347804
  20. Buhtiyarov D.A., Gorbachev A.P. // 2014 12th Int. Scientific and Technical Conf. “Actual Problems of Electronic Instrument Engineering (APEIE)” Novosibirsk. 02–04 Oct. N.Y.: IEEE, 2014. P. 304.http: doi.org/10.1109/APEIE.2014.7040902
  21. Горбачев А.П., Колесников А.А. Вибраторная антенная система. Патент РФ № 2802177. Опубл. офиц. бюл. “Изобретения. Полезные модели” № 24 от 22.08.2023.
  22. Бушминский И.П., Морозов Г.В. Технологическое проектирование микросхем СВЧ. М.: Изд-во МГТУ им. Н.Э. Баумана, 2001.
  23. Справочник по элементам полосковой техники / Под ред. А.Л. Фельдштейна. М.: Связь, 1979.
  24. Устройства СВЧ и антенны / Под ред. Д. И. Воскресенского. М.: Радиотехника, 2016.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dipole-type emitter with center-end feed.

Download (1MB)
3. Fig. 2. Geometry of the problem of analysis of the DTSK.

Download (118KB)
4. Fig. 3. “Fractional” difference radiation pattern.

Download (125KB)
5. Fig. 4. “Funnel-shaped” difference radiation pattern.

Download (350KB)
6. Fig. 5. Structural diagrams of antennas from two collinear DCTs. Above is the diagram for the sum RP, in the center – for the “lobe” RP, below – for the “funnel” RP.

Download (77KB)
7. Fig. 6. Topology of an antenna with a “share” difference radiation pattern.

Download (276KB)
8. Fig. 7. Combined topologies of the front and back sides of the antenna substrate with a “lobe” difference radiation pattern.

Download (245KB)
9. Fig. 8. Photographs of the front (a) and back (b) sides of the antenna with a “fractional” differential radiation pattern.

Download (193KB)
10. Fig. 9. Frequency response of the input reflection coefficient module |S11| of an antenna with a “fractional” difference radiation pattern.

Download (45KB)
11. Fig. 10. Section of the volumetric radiation pattern in the plane of polarization of an antenna with a “fractional” differential radiation pattern.

Download (131KB)
12. Fig. 11. Photograph of the front side of the antenna with a “funnel-shaped” differential radiation pattern.

Download (91KB)
13. Fig. 12. Frequency response of the input reflection coefficient module |S11| of an antenna with a “funnel-shaped” difference radiation pattern.

Download (36KB)
14. Fig. 13. Sections of the volumetric radiation pattern of an antenna with a “funnel-shaped” differential radiation pattern in the plane of polarization (a) and in the plane of the magnetic vector (b)

Download (261KB)

Copyright (c) 2025 Russian Academy of Sciences