Анализ радиационного поглощения акустических волн Лэмба в пластинах, нагруженных невязкой непроводящей жидкостью

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Экспериментально исследована зависимость радиационных потерь в жидкость от величины, нормальной к пластине компоненты смещения U3 на поверхности пьезоэлектрической пластины для волн Лэмба различных порядков. Рассмотрены волны, у которых фазовая скорость Vn в пластине больше, чем скорость продольной объемной акустической волны в жидкости Vж. Показано, что при малых значениях U3 излучение в жидкость отсутствует и величина радиационных потерь близка к нулю даже при Vn > Vж, при больших значениях U3 величина радиационных потерь велика и у волн Лэмба в пластине YZ-LiNbO3 при нормированной на длину волны толщине 1.75 и частоте 16.97 МГц она достигает значения 4 дБ/мм, сравнимого с радиационными потерями поверхностных акустических волн в том же материале.

Об авторах

Н. А. Агейкин

Институт радиотехники и электроники им. В.А. Котельникова РАН

Email: ageykin_niki@mail.ru
Российская Федерация, 125009, Москва, ул. Моховая, 11, корп. 7

В. И. Анисимкин

Институт радиотехники и электроники им. В.А. Котельникова РАН

Email: ageykin_niki@mail.ru
Российская Федерация, 125009, Москва, ул. Моховая, 11, корп. 7

Н. В. Воронова

Научно-исследовательский институт молекулярной электроники

Email: ageykin_niki@mail.ru
Российская Федерация, 124460, Москва, Зеленоград, ул. Академика Валиева, 6/1

А. В. Смирнов

Институт радиотехники и электроники им. В.А. Котельникова РАН

Автор, ответственный за переписку.
Email: ageykin_niki@mail.ru
Российская Федерация, 125009, Москва, ул. Моховая, 11, корп. 7

Список литературы

  1. Фрайден Дж. Мир электроники. Современные датчики. Справочник. М.: Техносфера, 2006.
  2. Викторов И.А. Физические основы применения ультразвуковых волн Рэлея и Лэмба в технике. М.: Наука, 1966.
  3. Kuznetsova I.E., Zaitsev B.D., Borodina I.A. et al. // Ultrasonics. 2004. V. 42. № 1–9. P. 179. https://doi.org/10.1016/j.ultras.2004.01.006
  4. Smirnov A., Anisimkin V., Voronova N. et al. // Sensors. 2022. V. 22. № 19. P. 7231. https://doi.org/10.3390/s22197231
  5. Caliendo C. // Sensors. 2015. V. 15. № 6. P. 12841. https://doi.org/10.3390/s150612841
  6. Terakawa Y., Kondoh J. // Jpn. J. Appl. Phys. 2020. V. 59. SKKC08. https://doi.org/10.35848/1347-4065/ab84ae
  7. White R.M., Wicher P.J., Wenzel S.W., Zellers E.T. // IEEE Trans. 1987. V. UFFC-34. № 2. P. 162. https://doi.org/10.1109/T-UFFC.1987.26928
  8. Kuznetsova I.E., Zaitsev B.D., Joshi S.G., Teplykh A.A. // Acoust. Phys. 2007. V. 53. № 5. P. 557. https://doi.org/10.1134/S1063771007050041
  9. Anisimkin I.V., Anisimkin V.I. // IEEE Trans. 2006. V. UFFC-53. № 8. P. 1487. https://doi.org/10.1109/TUFFC.2006.1665106
  10. Hamidullah M., Elie-Caille C., Leblois T. // J. Phys. D: Appl. Phys. 2022. V. 55. № 9. P. 094003. https://doi.org/10.1088/1361-6463/ac39c5
  11. Mansoorzare H., Shahraini S., Todi A. et al. // IEEE Trans. 2020. V. UFFC-67. № 6. P. 1210–1218. https://doi.org/10.1109/TUFFC.2019.2955402
  12. Anisimkin V., Shamsutdinova E., Li P. et al. // Sensors. 2022. V. 22. № 7. P. 2727. https://doi.org/10.3390/s22072727
  13. Anisimkin V.I., Voronova N.V. // Ultrasonics. 2021. V. 116. Article No. 106496. https://doi.org/10.1016/j.ultras.2021.106496
  14. Anisimkin V., Kolesov V., Kuznetsova A. et al. // Sensors. 2021. V. 21. № 3. P. 919.
  15. Adler E.L., Slaboszewics J.K., Farnell G.W., Jen C.K. // IEEE Trans. 1990. V. UFFC-37. № 3. P. 215.
  16. Slobodnik A.J., Jr., Conway E.D., Delmonico R.T. // J. Acoust. Soc. Am. 1974. V. 56. № 4. P. 1307.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (99KB)
3.

Скачать (127KB)
4.

Скачать (113KB)

© Н.А. Агейкин, В.И. Анисимкин, Н.В. Воронова, А.В. Смирнов, 2023