Possibility of diagnostics of layered media with interferometric side-view sonar

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A method is considered and an algorithm is developed that makes it possible to identify the layered structure of the propagation medium of a probing signal based on strip survey data from an interferometric side-scan sonar (ISSS) with antennas located in a vertical plane. Using the example of mathematical modeling of phase-difference measurements of ISSS for multilayer scattering planes, the capabilities of the proposed algorithm to determine their spatial position are demonstrated in the wave propagation medium. An analysis of the accuracy of calculating the position of scattering layers at heights (depths) and with different slopes was performed. The effectiveness of the method and algorithm for diagnosing the structure of layered media has been confirmed. The effectiveness of the method was tested on experimental data obtained using ISSS.

全文:

受限制的访问

作者简介

V. Kaevitser

Kotelnikov Institute of Radioengineering and Electronics Russian Academy of Sciences

Email: ilia159@mail.ru

Fryazino branch

俄罗斯联邦, Fryazino Moscow oblast, 141190

A. Krivtsov

Kotelnikov Institute of Radioengineering and Electronics Russian Academy of Sciences

Email: ilia159@mail.ru

Fryazino branch

俄罗斯联邦, Fryazino Moscow oblast, 141190

I. Smolyaninov

Kotelnikov Institute of Radioengineering and Electronics Russian Academy of Sciences

编辑信件的主要联系方式.
Email: ilia159@mail.ru

Fryazino branch

俄罗斯联邦, Fryazino Moscow oblast, 141190

A. Elbakidze

Kotelnikov Institute of Radioengineering and Electronics Russian Academy of Sciences

Email: ilia159@mail.ru

Fryazino branch

俄罗斯联邦, Fryazino Moscow oblast, 141190

参考

  1. Захаров А.И., Яковлев О.И., Смирнов В.М. Спутниковый мониторинг земли: Радиолокационное зондирование поверхности. М.: Либрокон, 2013.
  2. Арманд Н.А. // РЭ. 1995. Т. 40. № 3. С. 357.
  3. Armand N.A., Polyakov V.M. Radio propagation and remote sensing of the environment. N.Y.: CRC Press, 2005.
  4. Андреева И.Б // Акуст. журн. 1999. Т. 45. № 4. С. 437.
  5. Морозов А.Н., Лемешко Е.М., Федоров С.В. // Акуст. журн. 2017.Т. 63. № 5. С. 513.
  6. Бреховских Л.М. Волны в слоистых средах. М.: АН СССР, 1957.
  7. Kaevitser V.I., Razmanov V.M. // Physics-Uspekhi (Advances in Phys. Sci.). 2009. V. 179. № 2. P. 218.
  8. Кривцов А.П., Смольянинов И.В., Элбакидзе А.В., Степанов А.В. // Журн. радиоэлектроники.2017. № 4. http://jre.cplire.ru/jre/apr17/2/text.pdf
  9. Каевицер В.И., Кривцов А.П., Смольянинов И.В., Элбакидзе А.В. // Журн. радиоэлектроники.2022. № 10. http://jre.cplire.ru/jre/oct22/7/text.pdf

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Geometry of surveying the underlying surface using a side-looking interferometer.

下载 (87KB)
3. Fig. 2. Example of phase difference obtained by IGBT.

下载 (284KB)
4. Fig. 3. Dependence of the interferometric phase difference on the slant range for the air defense missile system at depths of 20 (a) and 100 m (b).

下载 (128KB)
5. Fig. 4. Result of modeling correlation processing for flat, horizontal SAMs at depths of 20 and 100 m.

下载 (54KB)
6. Fig. 5. Result of modeling the normalized two-dimensional correlation function depending on the depth H and angle β; model layer depth is 100 m, interferometer base d/ λ = 20.

下载 (74KB)
7. Fig. 6. Result of modeling correlation processing for a flat ZRS at a depth of 100 m (section at angle β= 5°).

下载 (76KB)
8. Fig. 7. Result of two-dimensional correlation processing of experimental measurements of the IGBT depending on the depth H and the angle of inclination β.

下载 (62KB)

版权所有 © Russian Academy of Sciences, 2024