Methods for Image Analysis of Intracellular Structures of Actin Labeled with Phalloidin
- Authors: Revittser A.V.1, Negulyaev Y.A.1
-
Affiliations:
- Institute of Cytology Russian Academy of Sciences
- Issue: Vol 66, No 3 (2024)
- Pages: 299-306
- Section: Articles
- URL: https://rjonco.com/0041-3771/article/view/669599
- DOI: https://doi.org/10.31857/S0041377124030101
- EDN: https://elibrary.ru/PDYRCM
- ID: 669599
Cite item
Abstract
A cell is a complex three-dimensional system, which possesses a number of highly dynamic structures with extended, rugged, and uneven morphology. The actin cytoskeleton consists of fibrillar and globular actin, as well as auxiliary proteins that regulate organization. The shape and the rearrangements of actin cytoskeleton are closely related to functioning of the cell. The ability to characterize these changes allows scientists to confirm or refute any hypotheses in the research. Obtaining a numerical equivalent of the actin cytoskeleton organization could help compare actin structures in biological experiments (example: exposure to biologically active substances). The review summarizes methods for analyzing images of intracellular actin structures labeled with phalloidin using ImageJ. The methods considered make it possible to obtain a quantitative characteristic of the organization of actin structures for further evaluation and comparison of experimental results.
About the authors
A. V. Revittser
Institute of Cytology Russian Academy of Sciences
Author for correspondence.
Email: eetytnet@gmail.com
Russian Federation, St. Petersburg, 194064
Y. A. Negulyaev
Institute of Cytology Russian Academy of Sciences
Email: eetytnet@gmail.com
Russian Federation, St. Petersburg, 194064
References
- Alioscha-Perez M., Benadiba C., Goossens K., Kasas S., Dietler G., Willaert R., Sahli H. 2016. A robust actin filaments image analysis framework. PLOS Comput. Biol. V. 12: e1005063. https://doi.org/10.1371/journal.pcbi.1005063
- Bhavna R., Sonawane M. 2023. A deep learning framework for quantitative analysis of actin microridges. Npj Systems Biol. Applications. V 9. P. 21. https://doi.org/10.1038/s41540-023-00276-7
- Bishop C. J., Peres Y. 2016. Minkowski and Hausdorff dimensions in fractals in probability and analysis. Cambridge: Cambridge University Press. P. 1. https://doi.org/10.1017/9781316460238.002
- Chubinskiy-Nadezhdin V.I., Efremova T. N., Khaitlina S. Y., Morachevskaya E. A. 2013. Functional impact of cholesterol sequestration on actin cytoskeleton in normal and transformed fibroblasts. Cell Biol. Int. V. 37. P. 617 https://doi.org/10.1002/cbin.10079
- Chubinskiy-Nadezhdin V.I., Vasileva V. Y., Vassilieva I. O., Sudarikova, A.V., Morachevskaya E. A., Negulyaev Y. A. 2019. Agonist-induced Piezo1 activation suppresses migration of transformed fibroblasts. Biochem. Biophys. Res. Commun. V. 514. P. 173. https://doi.org/10.1016/j.bbrc.2019.04.139
- Domanski D., Zegrocka-Stendel O., Perzanowska A., Dutkiewicz M., Kowalewska M., Grabowska I., Maciejko D., Fogtman A., Dadlez M., Koziak K. 2016. Molecular mechanism for cellular response to β-escin and its therapeutic implications. PloS One. V. 11. P. e0164365. https://doi.org/10.1371/journal.pone.0164365
- Dominguez R., Holmes C. K. 2011. Actin structure and function. Ann. Rev. Biophys. V. 40. P. 169 https://doi.org/10.1146/annurev-biophys-042910-155359
- Fuseler J. W., Millette C. F., Davis J. M., Carver W. 2007. Fractal and image analysis of morphological changes in the actin cytoskeleton of neonatal cardiac fibroblasts in response to mechanical stretch. Microscopy and Microanalysis. V. 13. P. 133. https://doi.org/10.1017/S1431927607070225
- Hao X., Wu J., Shan Y., Cai M., Shang X., Jiang J., Wang H. 2012. Caveolae-mediated endocytosis of biocompatible gold nanoparticles in living Hela cells. J. Physics. Condensed Matter. V. 24. 164207 https://doi.org/10.1088/0953-8984/24/16/164207
- Huang Q., Chai H., Wang S., Sun Y., Xu W. 2021. 0.5-Gy X-ray irradiation induces reorganization of cytoskeleton and differentiation of osteoblasts. Mol. Med. Rep. V 23. P. 379. https://doi.org/10.3892/mmr.2021.12018
- Karperien A., Ahammer H., Jelinek H. F. 2013. Quantitating the subtleties of microglial morphology with fractal analysis. Frontiers Cell. Neurosci. V. 7. P. 3. https://doi.org/10.3389/fncel.2013.00003
- Lichtenstein N., Geiger B., Kam Z. 2003. quantitative analysis of cytoskeletal organization by digital fluorescent microscopy. Cytometry. V. 54. P. 8. https://doi.org/10.1002/cyto.a.10053
- Liu C., Fan Y., Zhou L., Zhu H., Song Y., Hu L., Wang Y., Li Q. 2015. Pretreatment of mesenchymal stem cells with angiotensin ii enhances paracrine effects, angiogenesis, gap junction formation and therapeutic efficacy for myocardial infarction. Int. J. Cardiol. V. 188. P. 22. https://doi.org/10.1016/j.ijcard.2015.03.425
- Liu Y., Mollaeian K., Ren J. 2018. An image recognition-based approach to actin cytoskeleton quantification. Electronics. V. 7. P. 443. https://doi.org/10.3390/electronics7120443
- Liu Y., Zhang J., Bharat C., Ren J. 2022. Cellular actin cytoskeleton morphology identification for mechanical characterization using deep learning. IEEE Access. V. 10: 97408. https://doi.org/10.1109/ACCESS.2022.3203720
- Longley P. A., Batty M. 1989. Fractal measurement and line generalization. Computers & Geosci. V. 15. P. 167. https://doi.org/10.1016/0098-3004(89)90032-0
- Lu A., Wang L., Qian L. 2015. The role of eNOS in the migration and proliferation of bone-marrow derived endothelial progenitor cells and in vitro angiogenesis. Cell Biol Int. V. 39. P. 484. https://doi.org/10.1002/cbin.10405
- Miroshnikova Y. A., Manet S., Li X., Wickström S. A., Faurobert E., Albiges-Rizo C. 2021. Calcium signaling mediates a biphasic mechanoadaptive response of endothelial cells to cyclic mechanical stretch. Mol. Biol. Cell. V. 32. P. 1724 https://doi.org/10.1091/mbc.E21-03-0106
- Mishra P., Martin D. C., Androulakis I. P., Moghe P. V. 2019. Fluorescence imaging of actin turnover parses early stem cell lineage divergence and senescence. Sci. Reports. V. 9. P. 10377.https://doi.org/10.1038/s41598-019-46682-y
- Nanguneri S., Pramod R. T., Efimova N., Das D., Jose M., Svitkina T., Nair D. 2019. Characterization of nanoscale organization of F-Actin in morphologically distinct dendritic spines in vitro using supervised learning. eNeuro. V. 6: ENEURO.0425-18.2019. https://doi.org/10.1523/ENEURO.0425-18.2019
- Niemistö A., Dunmire V., Yli-Harja O., Zhang W., Shmulevich I. 2005. Robust Quantification of in vitro angiogenesis through image analysis. IEEE Transactions on Medical Imaging. V. 24. P. 549. https://doi.org/10.1109/tmi.2004.837339
- Numasawa Y., Kimura T., Miyoshi S., Nishiyama N., Hida N., Tsuji H., Tsuruta H., Segawa K., Ogawa S., Umezawa A. 2011. Treatment of human mesenchymal stem cells with angiotensin receptor blocker improved efficiency of cardiomyogenic transdifferentiation and improved cardiac function via angiogenesis. Stem Cells (Dayton, Ohio). V. 29. P. 1405. https://doi.org/10.1002/stem.691
- Oei R. W., Hou G., Liu F., Zhong J., Zhang J., An Z., Xu L., Yang Y. 2019. Convolutional neural network for cell classification using microscope images of intracellular actin networks. PLoS One. V. 14: e0213626. https://doi.org/10.1371/journal.pone.0213626
- Qian A. R., Li D., Han J., Gao X., Di S. M., Zhang W., Hu L. F., Shang P. 2012. Fractal dimension as a measure of altered actin cytoskeleton in MC3T3-E1 cells under simulated microgravity using 3-D/2-D clinostats. IEEE Transactions Bio-Med. Eng V. 59. P. 1374. https://doi.org/10.1109/TBME.2012.2187785
- Rajković N., Krstonošić B., Milošević N. 2017. Box-counting method of 2D neuronal image: method modification and quantitative analysis demonstrated on images from the monkey and human brain. Comput. Mathemat. Methods Med. V. 2017: 8967902. https://doi.org/10.1155/2017/8967902.
- Revittser A. V., Chubinskiy-Nadezhdin V. I., Negulyaev Yu. A. 2022. Analysis of fibrillar-actin rearrangements in fetal human mesenchymal stell cells using the Minkowski fractal dimension. Cell Tiss. Biol. V. 16. P. 576. https://doi.org/10.1134/S1990519X22060074
- Revittser A. V., Chubinsky-Nadezhdin V. I., Negulyaev Yu. A. 2020. The Effect of atrial natriuretic peptide on reorganization of actin cytoskeleton and migration of human mesenchymal stem cells. Cell Tiss. Biol. V. 14. P. 154. https://doi.org/10.1134/S1990519X20020091.
- Revittser A., Selin I., Negulyaev Y., Chubinskiy-Nadezhdin V. 2021. The analysis of F-actin structure of mesenchymal stem cells by quantification of fractal dimension. PloS One. V. 16: e0260727. https://doi.org/10.1371/journal.pone.0260727
- Ristanović D., Stefanović B. D., Puškaš N. 2014. Fractal analysis of dendrite morphology using modified box-counting method. Neurosci. Res. V. 84. P. 64. https://doi.org/10.1016/j.neures.2014.04.005
- Schneider C. A., Rasband W. S., Eliceiri K. W. 2012. NIH image to imagej: 25 years of image analysis. Nature methods. V. 9. P. 671. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5554542/
- Shu S. T., Li W. F., Smithgall T. E. 2021. Visualization of host cell kinase activation by viral proteins using GFP fluorescence complementation and immunofluorescence microscopy. bio-protocol. V. 11: e4068 https://doi.org/10.21769/BioProtoc.4068
- Smith T. G., Lange G. D., Marks W. B. 1996. Fractal methods and results in cellular morphology — dimensions, lacunarity and multifractals. J. Neurosci. Methods. V. 69. P. 123. https://doi.org/10.1016/S0165-0270(96)00080-5
- Vallenius T. 2013. Actin stress fibre subtypes in mesenchymal-migrating cells. Open Biol. V. 3: 130001. https://doi.org/10.1098/rsob.130001
- Vindin H., Bischof L., Gunning P., Stehn J. 2014. Validation of an algorithm to quantify changes in actin cytoskeletal organization. J. Biomol. Screening. V. 19. P. 354. https://doi.org/10.1177/1087057113503494
- Zonderland J., Wieringa P., Moroni L. 2019. A quantitative method to analyse F-actin distribution in cells. Methods X. V. 6. P. 2562. https://doi.org/10.1016/j.mex.2019.10.018
Supplementary files
