Alpha-tocopheryl succinate induces ER stress, disregulates lipid metabolism and leads to apoptosis in normal and tumorous cell lines of epidermal origin

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Vitamin E succinate (VES, α-tocopheryl succinate), is a potential antitumor agent known to selectively affect the mitochondria of tumor cells. However, the data on the proapoptotic mechanism of action of VES are unclear, and the effect of VES on normal, non-tumorigenic cells has not been fully investigated. Previously, we showed that VES induces apoptosis via the mitochondrial pathway in A431 human epidermoid carcinoma cells. The goal of this work is to investigate the effect of VES on non-tumorigenic cells and to reveal commonalities and differences in pathways activated in normal and tumorous cells. To achieve this, we studied how VES affects such organelles as the ER and the Golgi apparatus, analyzed the expression of ER stress-associated genes, and also assessed the ROS content and the accumulation of lipid droplets in A431 human epidermoid carcinoma cells and HaCaT immortalized human keratinocytes. We show that in both cell lines there are signs of ER stress, the amount of ROS and lipid droplets increases, as does the number of apoptotic cells. At the same time, the key difference in the mechanisms apoptotic cell death induction in A431 and HaCaT cells treated with VES lies in the reaction of mitochondria: in A431 cells, apoptotic cell death is triggered via the mitochondrial pathway, while HaCaT cells initiate apoptosis without involving mitochondria. Thus, the targets of VES in normal and tumor cells may differ and can possibly complement each other during apoptosis induction.

全文:

受限制的访问

作者简介

M. Savitskaya

Lomonosov Moscow State University

Email: nakomis@mail.ru

Department of Cell Biology and Histology

俄罗斯联邦, Москва, 119234

I. Zakharov

Lomonosov Moscow State University

Email: nakomis@mail.ru

Department of Cell Biology and Histology

俄罗斯联邦, Moscow, 119234

А. Saidova

Lomonosov Moscow State University

Email: nakomis@mail.ru

Department of Cell Biology and Histology

俄罗斯联邦, Moscow, 119234

Е. Smirnova

Lomonosov Moscow State University

Email: nakomis@mail.ru

Department of Cell Biology and Histology

俄罗斯联邦, Moscow, 119234

G. Onishchenko

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: nakomis@mail.ru

Department of Cell Biology and Histology

俄罗斯联邦, Moscow, 119234

参考

  1. Савицкая М.А., Вильданова М.С., Кисурина-Евгеньева О.П., Смирнова Е.А., Онищенко Г.Е. 2012. Митохондриальный путь апоптоза в клетках эпидермоидной карциномы человека А431 при действии α-токоферилсукцината. ActaNaturae. Т. 4. С. 93. (Savitskaya M.A., Vildanova M.S., Kisurina-Evgenieva O.P., Smirnova E.A., Onischenko G.E. 2012. Mitochondrial pathway of α-tocopheryl succinate-induced apoptosis in human epidermoid carcinoma A431 cells. ActaNaturae. V. 4. P. 88.)
  2. Савицкая М.А., Онищенко Г.Е. 2016. α-Токоферилсукцинат влияет на жизнеспособность, пролиферацию и дифференцировку опухолевых клеток. Биохимия. Т. 81. № 8. С. 1036. (Savitskaya M.A., Onischenko G.E. 2016. α-Tocopherylsuccinate affects malignant cell viability, proliferation, and differentiation. Biochemistry (Moscow). V. 8. P. 806.)
  3. Badamchian M., Spangelo B.L., Bao Y., Hagiwara Y., Hagiwara H., Ueyama H., Goldstein A.L. 1994. Isolation of a vitamin E analog from a green barley leaf extract that stimulates release of prolactin and growth hormone from rat anterior pituitary cells in vitro. J. NutrBiochem. V. 5. P. 145. https://doi.org/10.1016/0955-2863(94)90086-8
  4. Bjelakovic G., Nikolova D., Simonetti R.G., Gluud C. 2004. Antioxidant supplements for prevention of gastrointestinal cancers: a systematic review and meta-analysis. Lancet. V. 364. P. 1219.
  5. Bommiasamy H., Back S.H., Fagone P., Lee K., Meshinchi S., Vink E., Sriburi R., Frank M., Jackowski S., Kaufman R.J., Brewer J.W. 2009. ATF6-alpha induces XBP1-independent expansion of the endoplasmic reticulum. J. Cell Sci. V. 122. Pt. 10. P. 1626. https://doi.org/10.1242/jcs.045625
  6. Boren J., Brindle K.M. 2012. Apoptosis-induced mitochondrial dysfunction causes cytoplasmic lipid droplet formation. Cell Death Differ. V. 19. P. 1561. https://doi.org/10.1038/cdd.2012.34
  7. Delikatny E.J., Cooper W.A., Brammah S., Sathasivam N., Rideout D.C. 2002. Nuclear magnetic resonance-visible lipids induced by cationic lipophilic chemotherapeutic agents are accompanied by increased lipid droplet formation and damaged mitochondria. Cancer Res. V. 62. P. 1394.
  8. Dong L.F., Jameson V.J., Tilly D., Cerny J., Mahdavian E. 2011. Mitochondrial targeting of vitamin E succinate enhances its pro-apoptotic and anti-cancer activity via mitochondrial complex II. J. Biol. Chem. V. 286. P. 3717.
  9. Dong L.F., Low P., Dyason J.C., Wang X.F., Prochazka L., Witting P.K., Freeman R., Swettenham E., Valis K., Liu J., Zobalova R., Turanek J., Spitz D.R., Domann F.E., Scheffler I.E., Ralph S.J., Neuzil J. 2008. Alpha-tocopheryl succinate induces apoptosis by targeting ubiquinone-binding sites in mitochondrial respiratory complex II. Oncogene. V. 27. P. 4324.
  10. Dos Santos G.A., Abreu e Lima R.S., Pestana C.R., Lima A.S., Scheucher P.S., Thomé C.H., Gimenes-Teixeira H.L., Santana-Lemos B.A., Lucena-Araujo A.R., Rodrigues F.P., Nasr R., Uyemura S.A., Falcão R.P., de Thé H., Pandolfi P.P. et al. 2012. (+)α-Tocopheryl succinate inhibits the mitochondrial respiratory chain complex I and is as effective as arsenic trioxide or ATRA against acute promyelocytic leukemia in vivo. Leukemia. V. 26. P. 451.
  11. Gao F.F., Quan J.H., Lee M.A., Ye W., Yuk J.M., Cha G.H., Choi I.W., Lee Y.H. 2021. Trichomonasvaginalis induces apoptosis via ROS and ER stress response through ER-mitochondria crosstalk in SiHa cells. Parasit. Vectors. V. 14. P. 603. https://doi.org/10.1186/s13071-021-05098-2
  12. Gorman A.M., Healy S.J., Jäger R., Samali A. 2012. Stress management at the ER: regulators of ER stress-induced apoptosis. Pharmacol. Ther. V. 134. P. 306. https://doi.org/10.1016/j.pharmthera.2012.02.003.
  13. Gruber J., Staniek K., Krewenka C., Moldzio R., Patel A., Böhmdorfer S., Rosenau T., Gille L. 2014. Tocopheramine succinate and tocopheryl succinate: mechanism of mitochondrial inhibition and superoxide radical production. Bioorg. Med. Chem. V. 22. P. 684.
  14. Hakumäki J.M., Poptani H., Sandmair A.M., Ylä-Herttuala S., Kauppinen R.A. 1999. 1H MRS detects polyunsaturated fatty acid accumulation during gene therapy of glioma: implications for the in vivo detection of apoptosis. Nat. Med. V. 5. P. 1323. https://doi.org/10.1038/15279. PMID: 10546002
  15. Hapala I., Marza E., Ferreira T. 2011. Is fat so bad? Modulation of endoplasmic reticulum stress by lipid droplet formation. Biol. Cell. V. 103. P. 271. https://doi.org/10.1042/BC20100144. PMID: 21729000
  16. Hitomi J., Katayama T., Eguchi Y., Kudo T., Taniguchi M., Koyama Y., Manabe T., Yamagishi S., Bando Y., Imaizumi K., Tsujimoto Y., Tohyama M. 2004. Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death. J. Cell Biol. V. 165. P. 347. https://doi.org/10.1083/jcb.200310015
  17. Huang X., Li L., Zhang L., Zhang Z., Wang X., Zhang X., Hou L., Wu K. 2013. Crosstalk between endoplasmic reticulum stress and oxidative stress in apoptosis induced by α-tocopheryl succinate in human gastric carcinoma cells. Br. J. Nutr. V. 109. P. 727. https://doi.org/10.1017/S0007114512001882.
  18. Huang X., Zhang Z., Jia L., Zhao Y., Zhang X., Wu K. 2010. Endoplasmic reticulum stress contributes to vitamin E succinate-induced apoptosis in human gastric cancer SGC-7901 cells. Cancer Lett. V. 296. P. 123. https://doi.org/10.1016/j.canlet.2010.04.002
  19. Israel K., Yu W., Sanders B.G., Kline K. 2000. Vitamin E succinate induces apoptosis in human prostate cancer cells: role for Fas in vitamin E succinate-triggered apoptosis. Nutr. Cancer. V. 36. P. 90.
  20. Jarc E., Petan T. 2019. Lipid droplets and the management of cellular stress. Yale J. Biol. Med. V. 92. P. 435.
  21. Kogure K., Hama S., Manabe S., Tokumura A., Fukuzawa K. 2002. High cytotoxicity of alphatocopherylhemisuccinate to cancer cells is due to failure of their antioxidative defense systems. Cancer Lett. V. 186. P. 151.
  22. Majima D., Mitsuhashi R., Fukuta T., Tanaka T., Kogure K. 2019. Biological functions of α-tocopheryl succinate. J. Nutr. SciVitaminol. V. 65. P. S104. https://doi.org/10.3177/jnsv.65.S104. PMID: 31619606
  23. Neuzil J., Dyason J.C., Freeman R., Dong L.F., Prochazka L., Wang X.F., Scheffler I., Ralph S.J. 2007. Mitocans as anti-cancer agents targeting mitochondria: lessons from studies with vitamin E analogues, inhibitors of complex II. J. Bioenerg. Biomembr. V. 39. P. 65.
  24. Neuzil J., Weber T., Gellert N., Weber C. 2001. Selective cancer cell killing by alpha-tocopheryl succinate. Br. J. Cancer. V. 84. P. 87.
  25. Neuzil J., Zhao M., Ostermann G., Sticha M., Gellert N., Weber C., Eaton J.W., Brunk U.T. 2002. Alpha-tocopheryl succinate, an agent with in vivo anti-tumour activity, induces apoptosis by causing lysosomal instability. Biochem. J. V. 362. Pt. 3. P. 709. https://doi.org/10.1042/0264-6021:3620709
  26. Potashnikova D., Gladkikh A., Vorobjev I.A. 2015. Selection of superior reference genes’ combination for quantitative real-time PCR in B-cell lymphomas. Ann. Clin. Lab. V. 45. P. 64.
  27. Prochazka L., Dong L.F., Valis K., Freeman R., Ralph S.J., Turanek J., Neuzil J. 2010. alpha-Tocopheryl succinate causes mitochondrial permeabilization by preferential formation of Bak channels. Apoptosis. V. 15. P. 782.
  28. Qiu L.Z., Yue L.X., Ni Y.H., Zhou W., Huang C.S., Deng H.F., Wang N.N., Liu H., Liu X., Zhou Y.Q., Xiao C.R., Wang Y.G, Gao Y. 2021. Emodin-induced oxidative inhibition of mitochondrial function assists BiP/IRE1α/CHOP signaling-mediated ER-related apoptosis. Oxid. Med. Cell Longev. V. 2021. P. 8865813. https://doi.org/10.1155/2021/8865813
  29. Quintero M., Cabañas M.E., Arús C. 2010. 13C-labelling studies indicate compartmentalized synthesis of triacylglycerols in C6 rat glioma cells. Biochim. Biophys. Acta. V. 1801. P. 693. https://doi.org/10.1016/j.bbalip.2010.03.013
  30. Rauchová H., Vokurková M., Drahota Z. 2014. Inhibition of mitochondrial glycerol-3- phosphate dehydrogenase by α-tocopheryl succinate. Int. J. Biochem. Cell Biol. V. 53. P. 409.
  31. Rodriguez-Enriquez S., Marin-Hernandez A., Gallardo-Perez J.C., Carreno-Fuentes L., Moreno-Sanchez R. 2009. Targeting of cancer energy metabolism. Mol. Nutr. Food Res. V. 53. P. 29.
  32. Sriburi R., Jackowski S., Mori K., Brewer J.W. 2004. XBP1: a link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum. J. Cell Biol. V. 167. P. 35. https://doi.org/10.1083/jcb.200406136
  33. Verfaillie T., Garg A.D., Agostinis P. 2013. Targeting ER stress induced apoptosis and inflammation in cancer. Cancer Letters. V. 332. P. 249. https://doi.org/10.1016/j.canlet.2010.07.016
  34. Wang X.F., Witting P.K., Salvatore B.A., Neuzil J. 2005. Vitamin E analogs trigger apoptosis in HER2/erbB2-overexpressing breast cancer cells by signaling via the mitochondrial pathway. Biochem. Biophys. Res. Commun. V. 326. P. 282.
  35. Weber T., Dalen H., Andera L., Nègre-Salvayre A., Augé N., Sticha M., Lloret A., Terman A., Witting P.K., Higuchi M., Plasilova M.,Zivny J., Gellert N., Weber C., Neuzil J. 2003. Mitochondria play a central role in apoptosis induced by alpha-tocopheryl succinate, an agent with antineoplastic activity: comparison with receptor-mediated pro-apoptotic signaling. Biochemistry. V. 42. P. 4277.
  36. Wlodkowic D., Skommer J., McGuinness D., Hillier C., Darzynkiewicz Z. 2009. ER-Golgi network – a future target for anti-cancer therapy. Leuk Res. V. 33. P. 1440. https://doi.org/10.1016/j.leukres.2009.05.025
  37. Yang Y., Wang G., Wu W., Yao S., Han X., He D., He J., Zheng G., Zhao Y., Cai Z., Yu R. 2018. Camalexin Induces apoptosis via the ROS-ER stress-mitochondrial apoptosis pathway in AML Cells. Oxid. Med. Cell Longev. V. 2018: 7426950. https://doi.org/10.1155/2018/7426950
  38. Yu W., Sanders B.G., Kline K. 2003. RRR-alpha-tocopheryl succinate-induced apoptosis of human breast cancer cells involves Bax translocation to mitochondria. Cancer Res. V. 63. P. 2483.
  39. Zhao Y., Neuzil J., Wu K. 2009. Vitamin E analogues as mitochondria-targeting compounds: from the bench to the bedside? Mol. Nutr. Food Res. V. 53. P. 129.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Response of cultured cells of the A431 and HaCaT lines to the effect of vitamin E succinate (VES): a – cell viability after cultivation in the presence of VES for 48 hours; b – the value of the apoptotic index of HaCaT cells at different concentrations and time of exposure to SVE. Data are presented as mean and standard deviation; Mann–Whitney test with Benjamini–Hochberg correction for multiple comparisons; differences with the control with the addition of alcohol are significant at (*) P < 0.05, (**) P < 0.01, (***) P < 0.001 or (****) P < 0.0001; n = 3–4 (a) and n = 3 (b).

下载 (212KB)
3. Fig. 2. Apoptosis in HaCaT cells under the influence of 60 µM SBE: a – hematoxylin and eosin staining; b, c – phase contrast and immunocytochemical detection of caspase 3 in the same cell, respectively. Shown is a representative result from three independent experiments.

下载 (197KB)
4. Fig. 3. Mitochondria in HaCaT cells after exposure to SVE for 48 hours: a–d – mitochondria in HaCaT cells stained with MitoTracker Orange in the control (a) and after exposure to SVE at a concentration of 40 (b), 60 (c) and 100 ( d) µM; d–i – immunocytochemical detection of cytochrome c in HaCaT cells in the control without alcohol (e) and with the addition of it (f), as well as after exposure to SVE at a concentration of 40 (g), 60 (h) and 100 (i) µM. Shown is a representative result from three independent experiments.

下载 (217KB)
5. Fig. 4. Ultrastructure of mitochondria in HaCaT cells in control (a, b) and after exposure to SVE for 48 hours at a concentration of 40 (c, d), 60 (e–g) and 100 (h–i) μM; nj – lipid inclusions (neutral fat).

下载 (511KB)
6. Fig. 5. Intravital detection of hydrogen peroxide in HaCaT cells in control (a, c) and after exposure to 40 μM SBE for 48 hours (b, d); phase contrast (a, b) and staining using the DCFH-DA probe (c, d); e – proportion of ROS-positive cells after cultivation in the presence of SVE. Data are presented as mean and standard deviation; Mann–Whitney test, difference from the control with the addition of alcohol, significant at (*) P < 0.05 (n = 3).

下载 (273KB)
7. Fig. 6. Detection of neutral fat in A431 (a, b) and HaCaT (c, d) cells after cultivation in control (a, c) and in the presence of 40 μM SBE (b, d).

下载 (460KB)
8. Fig. 7. Ultrastructure of granular ER in A431 (a–f) and HaCaT (g–m) cells in control and after 48-hour exposure to SVE. A431 cells: a – control; b, c – control with the addition of alcohol; d–f – 40 µM SBE. NaCaT cells: g – control, h – 40 µM CBE, i, j – 60 µM CBE, l, l – 100 µM CBE. Designations: ER – endoplasmic reticulum, MTX – mitochondria, NL – lipid droplets (neutral fat).

下载 (973KB)
9. Fig. 8. Immunocytochemical detection of the p58k protein as part of the Golgi apparatus in A431 (a, b) and HaCaT (c–f) cells in the control and after 48-hour exposure to SVE. A431 cells: a – control, b – 40 µM SBE. HaCaT cells: c – control, d – 40 µM CBE, d – 60 µM CBE, f – 100 µM CBE.

下载 (192KB)
10. Fig. 9. Ultrastructure of the Golgi apparatus in A431 (a–e) and HaCaT (f–o) cells in control and after 48-hour exposure to SVE. A431 cells: a, c – control; b, d, e – 40 µM SBE. HaCaT cells: f, h, i, j – control; g, n – 60 µM SBE; l, m – 40 µM SBE; o – 100 µM SBE. Designations: AG – Golgi apparatus, MTX – mitochondria.

下载 (721KB)
11. Fig. 10. Relative expression of ER stress marker genes: GRP78, ATF4 and CHOP in A431 and HaCaT cells exposed to 40 µM SBE. Real-time PCR. Data are presented as mean and standard deviation; Mann–Whitney test; differences with the control are significant at (*) P < 0.05 or (***) P < 0.001 (n = 3).

下载 (68KB)

版权所有 © Russian Academy of Sciences, 2024