Post-translational regulation of the p53 tumor suppressor activity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

P53, encoded by the TP53 gene, has attracted researchers’ interest for several decades as a key human tumor suppressor protein. P53-mediated tumor suppression is achieved through transactivation of its target genes, or as a consequence of direct binding of p53 to protein targets that are involved in the regulation of various cellular processes. The review briefly discusses mechanisms involved in the regulation of p53 activity at the protein level – from oligomerization required for the implementation of p53 transactivation mechanisms to ubiquitin-dependent proteolysis that maintains a low level of this proapoptotic protein in normal cells. The main enzymes involved in various post-translational modifications and the effects they can lead to are noted. Rational intervention in these pathways at one stage or another can be relevant both for research purposes and in the applied aspect, particularly for the anti-cancer drug development.

Full Text

Restricted Access

About the authors

A. A. Romanova

Saint Petersburg State Institute of Technology

Author for correspondence.
Email: angeliina.romanova@outlook.com
Russian Federation, Saint Petersburg, 190013

T. A. Grigoryeva

Saint Petersburg State Institute of Technology

Email: angeliina.romanova@outlook.com
Russian Federation, Saint Petersburg, 190013

V. G. Tribulovich

Saint Petersburg State Institute of Technology

Email: angeliina.romanova@outlook.com
Russian Federation, Saint Petersburg, 190013

References

  1. Асатурова А.В. 2015. Изоформы белка р53: роль в норме и патологии, особенности выявления и клиническое значение. Успехи современного естествознания. № 3. С. 9. (Asaturova A.V. 2015. Isoforms of p53 protein: role in norm and pathology, features of detection and clinical significance. Successes of Modern Natural Science. No. 3. P. 3.)
  2. Дакс А.А., Мелино Д., Барлев Н.А. 2013. Роль различных Е3-убиквитинлигаз в регуляции активности онкосупрессора р53. Цитология. Т. 55. № 10. C. 673. (Daks A.A., Melino D., Barlev N.A. 2013. The role of different E3 ubiquitin ligases in regulation of the p53 tumor suppressor protein. Tsitologiya. V. 55. P. 673.)
  3. Желтухин А.О., Чумаков П.М. 2010. Повседневные и индуцируемые функции гена р53. Успехи биол. химии. Т. 50. № 1. C. 447. (Zheltuhin A.O., Chumakov P.M. 2010. Constitutive and induced functions of the p53 gene. Biochemistry (Moscow). V. 75. P. 1692. https://doi.org/10.1134/s0006297910130110)
  4. Чумаков, П.М. 2007. Белок р53 и его универсальные функции в многоклеточном организме. Успехи биологической химии. Т. 47. № 1. С. 3. (Chumakov P.M. 2007. Р53 protein and its universal functions in the multicellular organism. Adv. Biol. Chem. V. 47. P. 3.)
  5. Шувалов О.Ю., Федорова О.А., Петухов А.В., Дакс А.А., Васильева Е.А., Григорьева Т,А., Иванов Г.С., Барлев Н.А. 2015. Негативные регуляторы онкосупрессора р53 в контексте направленной противоопухолевой терапии. Цитология. Т. 57. № 12. C. 847. (Shuvalov O. Yu., Fedorova O.A., Petukhov A.V., Daks A.A., Vasilieva E.A., Grigorieva T.A., Ivanov G.S., Barlev N.A. 2015. Negative regulators of tumor suppressor p53 in the context of anticancer therapy. Tsitologiya. V. 57. P. 847.)
  6. Amendolare A., Marzano F., Petruzzella V., Vacca R.A., Guerrini L., Pesole G., Sbisa E., Tullo A.T. 2022. The underestimated role of the p53 pathway in renal cancer. Cancers. V. 14. Art. ID 5733. https://doi.org/10.3390/cancers14235733
  7. Antoniou N., Lagopati N., Balourdas D.I., Nikolaou M., Papalampros A., Vasileiou P.V.S., Myrianthopoulos V., Kotsinas A., Shiloh Y., Liontos M., Gorgoulis V.G. 2019. The role of E3, E4 ubiquitin ligase (UBE4B) in human pathologies. Cancers. V. 12. P. 62. https://doi.org/10.3390/cancers12010062
  8. Auclair Y., Richard S. 2013. The role of arginine methylation in the DNA damage response. DNA Repair (Amst). V. 12. P. 459. https://doi.org/10.1016/j.dnarep.2013.04.006.
  9. Bai L., Zhu W.G. 2006. P53: structure, function and therapeutic applications. J. Cancer Mol. V. 2. P. 141.
  10. Baranes-Bachar K., Levy-Barda A., Oehler J., Reid D.A., Soria-Bretones I., Voss T.C., Chung D., Park Y., Liu C., Yoon J.B., Li W., Dellaire G., Misteli T., Huertas P., Rothenberg E. et al. 2018. The ubiquitin E3/E4 ligase UBE4A adjusts protein ubiquitylation and accumulation at sites of DNA damage, facilitating double-strand break repair. Mol. Cell. V. 69. P. 866. https://doi.org/10.1016/j.molcel.2018.02.002
  11. Bettermann K., Benesch M., Weis S., Haybaeck J. 2012. SUMOylation in carcinogenesis. Cancer Lett. V. 316. P. 113. https://doi.org/10.1016/j.canlet.2011.10.036
  12. Brooks C.L., Gu W. 2006. P53 ubiquitination: Mdm2 and beyond. Mol. Cell. V. 21. P. 307. https://doi.org/10.1016/j.molcel.2006.01.020
  13. Bulatov E., Sayarova R., Mingaleeva R., Miftakhova R., Gomzikova M., Ignatyev Y., Petukhov A., Davidovich P., Rizvanov A., Barlev N.A. 2018. Isatin-Schiff base-copper (II) complex induces cell death in p53-positive tumors. Cell Death Discov. V. 4. P. 103. https://doi.org/10.1038/s41420-018-0120-z
  14. Capuozzo M., Santorsola M., Bocchetti M., Perri F., Cascella M., Granata V., Celotto V., Gualillo O., Cossu A.M., Nasti G., Caraglia M., Ottaiano A. 2022. P53: from fundamental biology to clinical applications in cancer. Biology (Basel). V. 11. Art. ID 1325. https://doi.org/10.3390/biology11091325
  15. Chen D., Brooks C.L., Gu W. 2006. ARF-BP1 as a potential therapeutic target. Br. J. Cancer. V. 94. P. 1555. https://doi.org/10.1038/sj.bjc.6603119
  16. Chillemi G., Davidovich P., D’Abramo M., Mametnabiev T., Garabadzhiu A.V., Desideri A., Melino G. 2013. Molecular dynamics of the full-length p53 monomer. Cell Cycle. V. 12. P. 3098. https://doi.org/10.4161/cc.26162
  17. Duffy M.J., Synnott N.C., O’Grady S., Crown J. 2022. Targeting p53 for the treatment of cancer. Semin. Cancer Biol. V. 79. P. 58. https://doi.org/10.1016/j.semcancer.2020.07.005
  18. Fedorova O., Daks A., Petrova V., Petukhov A., Lezina L., Shuvalov O., Davidovich P., Kriger D., Lomert E., Tentler D., Kartsev V., Uyanik B., Tribulovich V., Demidov O., Melino G. et al. 2018. Novel isatin-derived molecules activate p53 via interference with Mdm2 to promote apoptosis. Cell Cycle. V. 17. P. 1917. https://doi.org/10.1080/15384101.2018.1506664
  19. Fedorova O., Petukhov A., Daks A., Shuvalov O., Leonova T., Vasileva E., Aksenov N., Melino G., Barlev N.A. 2019. Orphan receptor NR4A3 is a novel target of p53 that contributes to apoptosis. Oncogene. V. 38. P. 2108. https://doi.org/10.1038/s41388-018-0566-8
  20. Fischer N.W., Prodeus A., Malkin D., Gariépy J. 2016. P53 oligomerization status modulates cell fate decisions between growth, arrest and apoptosis. Cell Cycle. V. 15. P. 3210. https://doi.org/10.1080/15384101.2016.1241917
  21. Gaglia G., Guan Y., Shah J.V., Lahav G. 2013. Activation and control of p53 tetramerization in individual living cells. Proc. Natl. Acad. Sci. USA. V. 110. P. 15497. https://doi.org/10.1073/pnas.1311126110
  22. Gencel-Augusto J., Lozano G. 2020. P53 tetramerization: at the center of the dominant-negative effect of mutant p53. Genes Dev. V. 34. P. 1128. https://doi.org/10.1101/gad.340976.120
  23. Grigoreva T.A., Novikova D.S., Melino G., Barlev N.A., Tribulovich V.G. 2024. Ubiquitin recruiting chimera: more than just a PROTAC. Biology Direct. V. 19. P. 55. https://doi.org/10.1186/s13062-024-00497-8
  24. Grigoreva T.A., Novikova D.S., Petukhov A.V., Gureev M.A, Garabadzhiu A.V., Melino G., Barlev N.A., Tribulovich V.G. 2017. Proapoptotic modification of substituted isoindolinones as MDM2-p53 inhibitors. Bioorg. Med. Chem. Lett. V. 27. P. 5197. https://doi.org/10.1016/j.bmcl.2017.10.049
  25. Grigoreva T., Romanova A., Sagaidak A., Vorona S., Novikova D., Tribulovich V. 2020. Mdm2 inhibitors as a platform for the design of P-glycoprotein inhibitors. Bioorg. Med. Chem. Lett. V. 30. Art. ID 127424. https://doi.org/10.1016/j.bmcl.2020.127424
  26. Guo T., Gu C. 2017. New insights into regulation of p53 protein degradation. Int. J. Clin. Exp. Med. V. 10. Art. ID 8773
  27. Gureev M., Novikova D., Grigoreva T., Vorona S., Garabadzhiu A., Tribulovich V. 2020. Simulation of MDM2 N-terminal domain conformational lability in the presence of imidazoline based inhibitors of MDM2-p53 protein-protein interaction. J. Comput. Aided. Mol. Des. V. 34. P. 55. https://doi.org/10.1007/s10822-019-00260-6
  28. Han D., Huang M., Wang T., Li Z., Chen Y., Liu C., Lei Z., Chu X. 2019. Lysine methylation of transcription factors in cancer. Cell Death Dis. V. 10. P. 290. https://doi.org/10.1038/s41419-019-1524-2
  29. Horikawa I., Park K.Y., Isogaya K., Hiyoshi Y., Li H., Anami K., Robles A.I., Mondal A.M., Fujita K., Serrano M., Harris C.C. 2017. Δ133p53 represses p53-inducible senescence genes and enhances the generation of human induced pluripotent stem cells. Cell Death Diff. V. 24. P. 1017. https://doi.org/10.1038/cdd.2017.48
  30. Horvat A., Tadijan A., Vlašić I., Slade N. 2021. P53/p73 protein network in colorectal cancer and other human malignancies. Cancers. V. 13.Art. ID 2885. https://doi.org/10.3390/cancers13122885
  31. Hernandez Borrero L.J., El-Deiry W.S. 2021. Tumor suppressor p53: Biology, signaling pathways, and therapeutic targeting. Biochim. Biophys. Acta. Rev. Cancer. V. 1876. Art. ID 188556. https://doi.org/10.1016/j.bbcan.2021.188556
  32. Ivanov G.S., Ivanova T., Kurash J., Ivanov A., Chuikov S., Gizatullin F., Herrera-Medina E.M., Rauscher F. 3rd, Reinberg D., Barlev N.A. 2007. Methylation-acetylation interplay activates p53 in response to DNA damage. Mol. Cell Biology. V. 27. P. 6756. https://doi.org/10.1128/MCB.00460-07
  33. Jansson M., Durant S.T., Cho E.C., Sheahan S., Edelmann M., Kessler B., La Thangue N.B. 2008. Arginine methylation regulates the p53 response. Nat. Cell Biol. V. 10. P. 1431. https://doi.org/10.1038/ncb1802
  34. Joerger A.C., Fersht A.R. 2010. The tumor suppressor p53: from structures to drug discovery. Cold Spring Harb. Perspect. Biol. V. 2. Art. ID a000919. https://doi.org/10.1101/cshperspect.a000919
  35. Ka W.H., Cho S.K., Chun B.N., Byun S.Y., Ahn J.C. 2018. The ubiquitin ligase COP1 regulates cell cycle and apoptosis by affecting p53 function in human breast cancer cell lines. Breast Cancer. V. 25. P. 529. https://doi.org/10.1007/s12282-018-0849-5
  36. Kamada R., Toguchi Y., Nomura T., Imagawa T., Sakaguchi K. 2016. Tetramer formation of tumor suppressor protein p53: Structure, function, and applications. Peptide Science. V. 106. P. 598. https://doi.org/10.1002/bip.22772
  37. Kim S., An S. 2016. Role of p53 isoforms and aggregations in cancer. Medicine (Baltimore). V. 95. Art. ID e3993. https://doi.org/10.1097/MD.0000000000003993
  38. Klein A.M., de Queiroz R.M., Venkatesh D., Prives C. 2021. The roles and regulation of MDM2 and MDMX: it is not just about p53. Genes Dev. V. 35. P. 575. https://doi.org/10.1101/gad.347872.120
  39. Krasavin M., Gureyev M., Dar’in D., Bakulina O., Chizhova M., Lepikhina A.,Novikova D., Grigoreva T., Ivanov G., Zhumagalieva A., Garabadzhiu A.V., Tribulovich V. 2018. Design; in silico prioritization and biological profiling of apoptosis-inducing lactams amenable by the Castagnoli-Cushman reaction. Bioorg. Med. Chem. V. 26. P. 2651. https://doi.org/10.1016/j.bmc.2018.04.036
  40. Kuang L., Jiang Y., Li C., Jiang Y. 2021. WW domain-containing E3 ubiquitin protein ligase 1: a self-disciplined oncoprotein. Front. Cell Dev. Biol. V. 9. Art. ID 757493. https://doi.org/10.3389/fcell.2021.757493
  41. Laine A., Topisirovic I., Zhai D., Reed J.C., Borden K.L., Ronai Z. 2006. Regulation of p53 localization and activity by Ubc13. Mol. Cell Biol. V. 26. P. 8901. https://doi.org/10.1128/MCB.01156-06
  42. Lang V., Pallara C., Zabala A., Lobato-Gil S., Lopitz-Otsoa F., Farrás R., Hjerpe R., Torres-Ramos M., Zabaleta L., Blattner C., Hay R.T., Barrio R., Carracedo A., Fernandez-Recio J., Rodríguez M.S. et al. 2014. Tetramerization-defects of p53 result in aberrant ubiquitylation and transcriptional activity. Mol. Oncol. V. 8. P. 1026. https://doi.org/10.1016/j.molonc.2014.04.002
  43. Lee S.W., Seong M.W., Jeon Y. J., Chung C.H. 2012. Ubiquitin E3 ligases controlling p53 stability. Animal Cells Syst. V. 16. P. 173. https://doi.org/101080/19768354.2012.688769
  44. Leng R.P., Lin Y., Ma W., Wu H., Lemmers B., Chung S., Parant J.M., Lozano G., Hakem R., Benchimol S. 2003. Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell. V. 112. P. 779. https://doi.org/10.1016/s0092-8674(03)00193-4
  45. Lezina L, Aksenova V, Fedorova O, Malikova D, Shuvalov O, Antonov A.V., Tentler D., Garabadgiu A.V., Melino G., Barlev N.A. 2015. KMT Set7/9 affects genotoxic stress response via the Mdm2 axis. Oncotarget. V. 6. Art. ID 25843. https://doi.org/10.18632/oncotarget.4584
  46. Li X., Pu W., Zheng Q., Ai M., Chen S., Peng Y. 2022. Proteolysis-targeting chimeras (PROTACs) in cancer therapy. Mol. Cancer. V. 21. P. 99. https://doi.org/10.1186/s12943-021-01434-3
  47. Liebl M.C., Hofmann T.G. 2021. The role of p53 signaling in colorectal cancer. Cancers (Basel). V. 13. Art. ID 2125. https://doi.org/10.3390/cancers13092125
  48. Liu J., Zhang C., Wang X., Hu W., Feng Z. 2021. Tumor suppressor p53 cross-talks with TRIM family proteins. Genes Dis. V. 8. P. 463. https://doi.org/10.1016/j.gendis.2020.07.003
  49. Liu Y., Tavana O., Gu W. 2019. P53 modifications: exquisite decorations of the powerful guardian. J. Mol. Cell Biol. V. 11. P. 564. https://doi.org/10.1093/jmcb/mjz060
  50. Lubin D.J., Butler J.S., Loh S.N. 2010. Folding of tetrameric p53: oligomerization and tumorigenic mutations induce misfolding and loss of function. J. Mol. Biol. V. 395. P. 705. https://doi.org/10.1016/j.jmb.2009.11.013
  51. Marine J.C. 2012. Spotlight on the role of COP1 in tumorigenesis. Nat. Rev. Cancer. V. 7. P. 455. https://doi.org/10.1038/nrc3271
  52. Mehta S., Campbell H., Drummond C.J., Li K., Murray K., Slatter T., Bourdon J.C., Braithwaite A.W. 2021. Adaptive homeostasis and the p53 isoform network. EMBO Reports. V. 22. Art. ID e53085. https://doi.org/10.15252/embr.202153085
  53. Mittenberg A.G., Moiseeva T.N., Barlev N.A. 2018 Role of proteasomes in transcription and their regulation by covalent modifications. Front. Biosci. V. 13. P. 7184. https://doi.org/10.2741/3220
  54. Moll U.M., Wolff S., Speidel D., Deppert W. 2005. Transcription-independent pro-apoptotic functions of p53. Curr. Opin. Cell Biol. V. 17. P. 631. https://doi.org/10.1016/j.ceb.2005.09.007
  55. Nagpal I., Yuan Z. 2021. The basally expressed p53-mediated homeostatic function. Front. Cell Dev. Biol. V. 9. Art. ID 775312. https://doi.org/10.3389/fcell.2021.775312
  56. Osterburg C., Dötsch V. 2022. Structural diversity of p63 and p73 isoforms. Cell Death Differ. V. 29. P. 921. https://doi.org/10.1038/s41418-022-00975-4
  57. Pan M., Blattner C. 2021. Regulation of p53 by E3s. Cancers. V. 13. Art. ID 745. https://doi.org/10.3390/cancers13040745.
  58. Rada M., Vasileva E., Lezina L., Marouco D., Antonov A.V., Macip S., Melino G., Barlev N.A. 2016. Human EHMT2/G9a activates p53 through methylation-independent mechanism. Oncogene. V. 36. P. 922. https://doi.org/10.1038/onc.2016.258
  59. Reed S.M., Quelle D.E. 2014. P53 acetylation: regulation and consequences. Cancers. V. 7. Art. ID 30. https://doi.org/10.3390/cancers7010030
  60. Rodriguez M.S., Desterro J.M., Lain S., Lane D.P., Hay R.T. 2000. Multiple C-terminal lysine residues target p53 for ubiquitin-proteasome-mediated degradation. Mol. Cell Biol. V. 20. P. 8458. https://doi.org/10.1128/MCB.20.22.8458-8467.2000
  61. Scoumanne A., Chen X. 2008. Protein methylation: a new regulator of the p53 tumor suppressor. Histol. Histopathol. V. 23. Art. ID 1143. https://doi.org/10.14670/hh-23.1143
  62. Sharif J., Tsuboi A., Koseki H. 2010. TOPORS (topoisomerase I binding, arginine/serine-rich). Atlas Genet. Cytogenet. Oncol. Haematol. V. 14. P. 263.
  63. Sheng Y., Laister R.C., Lemak A., Wu B., Tai E., Duan S., Lukin J, Sunnerhagen M., Srisailam S., Karra M., Benchimol S., Arrowsmith C.H. 2008. Molecular basis of Pirh2-mediated p53 ubiquitylation. Nat. Struct. Mol. Biol. V. 15. P. 1334. https://doi.org/10.1038/nsmb.1521
  64. Sheren J.E., Kassenbrock C.K. 2013. RNF38 encodes a nuclear ubiquitin protein ligase that modifies p53. Biochem. Biophys. Res. Commun. V. 440. P. 473. https://doi.org/10.1016/j.bbrc.2013.08.031
  65. Steffens Reinhardt L., Zhang X., Groen K., Morten B.C., De Iuliis G.N., Braithwaite A.W., Bourdon J.C., Avery-Kiejda K.A. 2022. Alterations in the p53 isoform ratio govern breast cancer cell fate in response to DNA damage. Cell Death Dis. V. 13. P. 907. https://doi.org/10.1038/s41419-022-05349-9
  66. Sykes S.M., Mellert H.S., Holbert M.A., Li K., Marmorstein R., Lane W.S., McMahon S.B. 2006. Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Mol. Cell. V. 24. P. 841. https://doi.org/10.1016/j.molcel.2006.11.026
  67. Synoradzki K.J., Bartnik E., Czarnecka A.M., Fiedorowicz M., Firlej W., Brodziak A., Stasinska A., Rutkowski P., Grieb P. 2021. TP53 in biology and treatment of osteosarcoma. Cancers (Basel). V. 13. P. 4284. https://doi.org/10.3390/cancers13174284
  68. Tang Y., Zhao W., Chen Y., Zhao Y., Gu W. 2008. Acetylation is indispensable for p53 activation. Cell. V. 133. P. 612. https://doi.org/10.1016/j.cell.2008.03.025
  69. Vieler M., Sanyal S. 2018. P53 isoforms and their implications in cancer. Cancers (Basel). V. 10. Art. ID 288. https://doi.org/10.3390/cancers10090288
  70. Vlasic I., Horvat A., Tadijan A., Slade N. 2022. P53 family in resistance to targeted therapy of melanoma. Int. J. Mol. Sci. V. 24. Art. ID 65. https://doi.org/10.3390/ijms24010065
  71. Wang F., He L., Huangyang P., Liang J., Si W., Yan R., Han X., Liu S., Gui B., Li W., Miao D., Jing C., Liu Z., Pei F., Sun L. et al. 2014. JMJD6 promotes colon carcinogenesis through negative regulation of p53 by hydroxylation. PLoS Biol. V. 12. Art. ID e1001819. https://doi.org/10.1371/journal.pbio.1001819
  72. Wang H., Guo M., Wei H., Chen Y. 2023. Targeting p53 pathways: mechanisms, structures, and advances in therapy. Signal Transduct. Target. Ther. V. 8. P. 92. https://doi.org/10.1038/s41392-023-01347-1
  73. Wang Y., Zhang Ch., Wang J., Liu J. 2022. P53 regulation by ubiquitin and ubiquitin-like modifications. Gen. Instab. Dis. V. 3. P. 179. https://doi.org/101007/s42764-022-00067-0
  74. Wen J., Wang D. 2021. Deciphering the PTM codes of the tumor suppressor p53. J. Mol. Cell Biol. V. 13. P. 774.
  75. Wesche J., Kühn S., Kessler B.M., Salton M., Wolf A. 2017. Protein arginine methylation: a prominent modification and its demethylation. Cell. Mol. Life Sci. V. 74. P. 3305. https://doi.org/10.1007/s00018-017-2515-z
  76. West L.E., Gozani O. 2011. Regulation of p53 function by lysine methylation. Epigenomics. V. 3. P. 361. https://doi.org/10.2217/EPI.11.21
  77. Xu Z., Wu W., Yan H., Hu Y., He Q., Luo P. 2021. Regulation of p53 stability as a therapeutic strategy for cancer. Biochem. Pharmacol. V. 185. Art. ID 114407. https://doi.org/10.1016/j.bcp.2021.114407
  78. Yakovlev V.A., Bayden A.S., Graves P.R., Kellogg G.E., Mikkelsen R.B. 2010. Nitration of the tumor suppressor protein p53 at tyrosine 327 promotes p53 oligomerization and activation. Biochemistry. V. 49. P. 5331. https://doi.org/10.1016/j.bcp.2021.114407
  79. Yang J., Chen S., Yang Y., Ma X., Shao B., Yang S., Wei Y., Wei X. 2020. Jumonji domain‐containing protein 6 protein and its role in cancer. Cell Prol. V. 53. Art. ID e12747. https://doi.org/10.1111/cpr.12747
  80. Zhao L., Sanyal S. 2022. P53 isoforms as cancer biomarkers and therapeutic targets. Cancers (Basel). V. 14. Art. ID 3145. https://doi.org/10.3390/cancers14133145
  81. Zhu H., Gao H., Ji Y., Zhou Q., Du Z., Tian L., Jiang Y., Yao K., Zhou Z. 2022. Targeting p53-MDM2 interaction by small-molecule inhibitors: learning from MDM2 inhibitors in clinical trials. Oncol. V. 15. P. 91. https://doi.org/10.1186/s13045-022-01314-3

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Functions of p53 in a multicellular organism.

Download (67KB)
3. Fig. 2. The main sites of posttranslational modifications shown on the domain structure of full-size p53 (p53a/FLp53). TAD – transactivation domain; PRD – proline–rich domain; DBD - DNA–binding domain; OD – oligomerization domain; CRD - C-terminal regulatory domain.

Download (87KB)

Copyright (c) 2024 Russian Academy of Sciences